

Investigation de la dynamique des astéroïdes avec Gaia

Orbites, masses, physique fondamentale

Serge Mouret,

F. Mignard, D. Hestroffer

AS Gaia, 18 décembre 2007

O - *C* principle

Input data: positions of the asteroids,observation dates, precision of observations

Correction to the initial conditions at the reference time Position-velocity Masses of perturbers **Global** parameters $(J2, \beta, \gamma, \eta, dG/dt)$ Physical parameters of certain asteroids

$$O - C = A \Delta \mathbf{u}$$

 $\sigma(\Delta \mathbf{u})$

Least-squares techniques

$$\Delta \mathbf{u} = (A^{t} A)^{-1} A^{t} (O - C)$$

Estimation of the error

Expected precisions

Realistic simulated data:

Observation dates, positions of the space probe, precision of observations By F. Mignard, P. Tanga, F. Arenou and D. Hestroffer

 $\sigma(\Delta \mathbf{u})$: diagonal elements of $\sqrt{(A^t A)^{-1}}$

 $O - C = (A) \Delta \mathbf{u}$

Precision of observations

From simulations of F. Arenou & D. Hestroffer

Orbits improvement

Expected precision on the semi-major axis

Specificities of mass determination

O-C = <u>A</u>∆u

Gaia specificity:

The number of valuable close approaches is very large and they involve many perturbers

Consequence:

Global solution for the perturber masses by simultaneously handling all perturbers and target asteroids

Results: expected precision on the masses

Number of masses				
Total	602			
σ (m)/m < 0.1%	2			
σ (m)/m < 1 %	3			
σ (m)/m < 10 %	36			
σ (m)/m < 15 %	59			
σ (m)/m < 20 %	75			
σ (m)/m < 30 %	106			
σ (m)/m < 50 %	149			

m is the reference mass of the perturber

 σ (m)/m is the relative precision

Current determinations: 21: σ (m)/m < 10%, 41: σ (m)/m < 50% but the systematic errors much larger

These results depend on many things which are not yet fully known such as

- the exact start of the mission,
- the exact duration
- the scanning law
- the expected precision on the positions
- the initial mass etc ...

Contribution of

ground-based observations

for mass determination

with Gaia

Selection criteria of the masses

• Gaia obs + 100 ground-based obs. $\rightarrow \sigma$ (m)/m < 50 %

- Never computed masses
- Low number of targets to attain this result (≤ 2)
 - Strong improvement of the Gaia precision

24 possible new masses (σ (m)/m < 50 %) by observing 45 target asteroids

Worth to prepare observation campaigns

and to extend the list of the perturbers

Fundamental physics

Solar quadrupole J2

Contraction of the second second

PPN parameters:

Eotvos experiment

Y

Violation of the Equivalence Principle

Variation of G

Fundamental physics

Input: > 200,000 asteroids

Parameters u	Theoretical values	Gaia precision (asteroids)	Current Precision	future missions
J2	2 x 10 ⁻⁷	1.9 x 10 -7	~6 x 10 ⁻⁹ (Helioseismology)	~ 10 ⁻⁸ (Bepicolombo)
β (PPN)	1	1.9 x 10 ⁻³	~ 2.3 x 10 ⁻⁴ (indirect η)	
γ (PPN)	1	1.1 x 10 ⁻³	~ 2.3 x 10 ⁻⁵ (time delay)	~ 10 ⁻⁶ - 10 ⁻⁷ (Gaia–bending of light)
η Nordtvedt	0	6.2 x 10 ⁻⁴	4.5 x 10 ⁻⁴ (LLR)	
dG/dt	0	3.9 x 10 ⁻¹²	9 x 10 ⁻¹³ (LLR)	

Non gravitational forces Yarkovsky effect

General principle

Anisotropic re-emission of heat (thermal infrared photons) received from the Sun in the visible. The photons, leaving the asteroid, carry away momentum.

Work in collaboration with M. Delbo

The force was modelled from Vokrouhlicky papers by M. Havel and M. Delbo (Master 2 project)

<u>Input</u>

1366 NEOs

Independent fit of some physical parameters

- diameter, thermal inertia, rotation parameters -

Simulations - RESULTS

Refine the tests

Find others

Observation

Non gravitational forces Yarkovsky effect possibility to derive physical properties of NEAs

Extend the list of these forces

Systematic errors

asteroids v Improvement of models

Mass of perturbers 36 with a $\sigma(m) < 10\%$ 149 with a $\sigma(m) < 50\%$ Only an order of scale

To study the systematic errors (Monte-Carlo) Ground-based obs. 24 new potential masses σ(m) < 50%

Gaia

To prepare observation campaigns

Orbit improvement of targets (and perturbers) $\sigma(a) < 1.E-8 \text{ AU}$ $\sigma(e) < 1.E-8 \text{ etc} \dots$

Lissajous orbit around the Sun-Earth L2 point

Modelled by F. Mignard

Observation dates of asteroids - the scanning law -

Simualtions of P. Tanga and F. Mignard