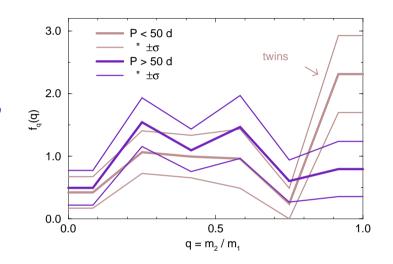
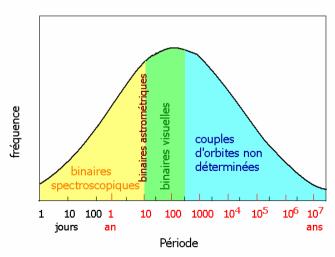
Etoiles doubles et exoplanètes

Jean-Louis Halbwachs, obs. de Strasbourg Frédéric Arenou, obs. de Paris-Meudon

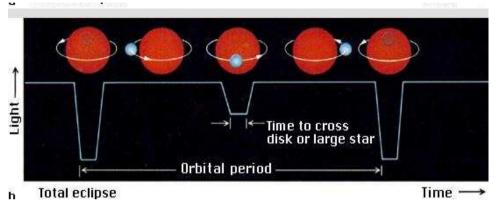
Préambule: les enjeux

Des binaires par centaines de milliers .. pour quoi faire?


Statistiques de binarité :


• pour les P < 10 ans, $f(q=M_2/M_1)$ n'est bien connue que pour les naines G-K

- f(log P) seulement pour naines G-K
- \blacktriangleright Déterminer $f(M_2/M_1)$, $f(\log P)$, %, en fonction de M_{Totale}


Masses:

- > Déterminer des Ma précises
- > Déterminer les masses des exoplanètes

Les binaires à éclipses : paramètres fondamentaux

 $\sigma_G \leq 0.5$ mmag pour $V \leq 13$ mag

- Rayons \Rightarrow T_{eff}
- Assombrissements centre-bord

Avec des éléments BS2 :

Masses

Les binaires à éclipses : exoplanètes

 $\delta m = -2.5 \log (1 - r^2/R_{s}^2) \ge 5 \text{ mmag (?)}$

⇒ des super-Terre autour des naines froides

TSp (CL V)	B0	A0	F0	G0	K0	MO
$\delta m(r_{Jup})_{mmag}$	0,2	2,0	5,0	9,4	16	32
r_{min}/r_{Jup} (δ m=5mmag)	6	1,6	1	0,7	0,6	0,4

À confirmer par VR-sol!

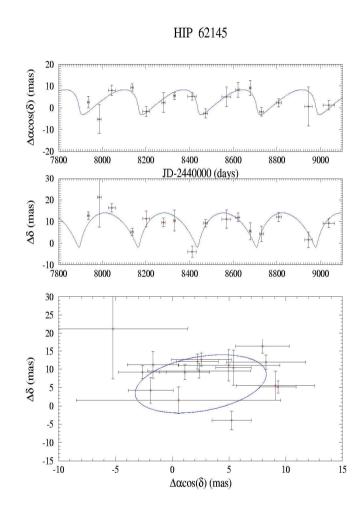
Les binaires spectroscopiques

40 mesures avec $\sigma_{VR} \approx 5$ km/s pour les étoiles brillantes (m_V < 7,5 mag pour B0 V, m_V < 13 mag pour G2 V)

 \Rightarrow Orbites jusqu'à $K_1 \approx 15$ km/s

Pour \mathcal{M}_1 = 1 \mathcal{M}_{\odot} , on a les K_1 ci-dessous :

M_2/M_1 P	3 jours	1 mois	1 an	5 ans
0,7	73 km/s	34 km/s	15 km/s	9 km/s
0,5	56 km/s	26 km/s	11 km/s	7 km/s
0,3	37 km/s	17 km/s	7,5 km/s	4 km/s
0,1	14 km/s	6 km/s	2,8 km/s	1,6 km/s


Ces chiffres doivent être \times 2 pour une primaire BO V

 $\Rightarrow f(\mathcal{M}_2/\mathcal{M}_1)$ étendue aux étoiles massives

Les binaires astrométriques: classification

Des types très différents :

- · à accélération
- · orbitales
- · à variabilité photométrique (VIM)
- · systèmes planétaires multiples

Les binaires astrométriques orbitales

$$a_{1(")} = [\mathcal{M}_{1(\mathcal{M}_{\odot})} .P_{an}^{2}]^{1/3} \times [q/(1+q)^{2/3}] / D_{pc}$$

Si $\mathcal{M}_1 = 1 \mathcal{M}_{\odot}$ et avec $\sigma_w \ge 50 \,\mu$ as $(m_v < 10 \,mag) \Rightarrow$ orbites pour $a_1 > 150 \,\mu$ as. On a les distances limites :

P =	1 mois	1 an	5 ans
$0.08~M_{\odot}$	97 pc	510 pc	1500 pc
10 Jupiter	12 pc	63 pc	190 pc
Jupiter	1,2 pc	6,3 pc	19 pc

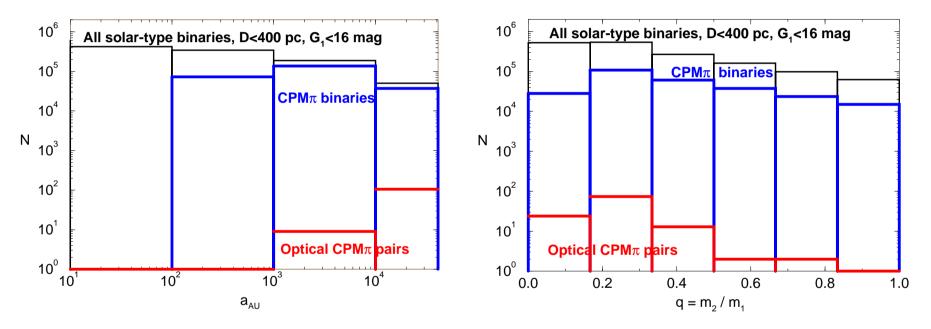
Complète les binaires spectroscopiques vers petits $\mathcal{M}_2/\mathcal{M}_1$ et longues P.

⇒Exploration de la transition naines brunes - planètes

Exoplanètes : des masses précises pour les planètes-BS à longue P (élimine les confusions avec naines brunes)

Binaires astrométriques et masses

• Binaires résolues :


Pouvoir séparateur < 0.1 " (20 mas ?)

- \Rightarrow Des couples orbitaux (P < 50 ans)
- ⇒ Les masses des composantes

• Orbites astrométriques + orbites de B52 en VR haute précision: des masses stellaires à 1 % !

Étoiles doubles à grandes séparations

Sélection des couples physiques sur la base de μ et ϖ (+VR si disponible).

f(log a) au-delà de 100 UA (1000 pour les ☆ massives)

 $f(q=M_2/M_1)$ sur tout le domaine des compagnons stellaires

Conclusion (1)

Des distributions statistiques <u>très</u> précises pour toutes les \mathcal{M}_1 (\triangle biais!) ..

- pour P < 10 ans (BinSpect et BinAstrom)</p>
- pour P > 100 ou 1000 ans pour \Rightarrow massives ($CPM\varpi$)
- \triangleright sur une grande plage de $\mathcal{M}_2/\mathcal{M}_1$ stellaires
- ⇒ Des distributions à masses totales constantes

Conclusion (2)

Des objets de petites masses <u>qui devront être</u> <u>observés du sol (VR)</u>:

- Naines brunes entre désert et steppe (BinAstrom)
- Jupiter chauds (BinEcl) autour de naines F et +
- Super-terres (BE) autour de naines M

Des masses stellaires, à déduire ou à améliorer par orbite spectro (BE, BA, BA résolues)