Gaia and Galactic kinematics: dark matter or modified gravity?

SF2A 2009, AS GAIA Benoit Famaey (ULB, AIfA Bonn, and Observatoire Astronomique de Strasbourg)

Gaia: long-term objective

Choose potential, write Hamiltonian, write closest integrable Hamiltonian, find distribution function F(J), adjust potential...

On shorter term: can we answer the crucial question of the existence of galactic dark matter by excluding (or at least constraining) a modified gravity approach?

Dark matter problems in external galaxies

- Simulations of clustering CDM halos (e.g. Diemand et al.) predict a central cusp $\rho \propto r^{\gamma}$, with $\gamma > 1$, observed in no single galaxy
 - (No present-day solution)
- Baryonic Tully-Fisher relation $V_{\infty}^{4} \propto M_{bar}$ (tight -> triaxiality of halo?)
- Wiggles of rotation curves follow wiggles of baryons (Renzo's rule)
- Tidal Dwarf Galaxies with DM in NGC 5291?

Correlation summarized by formula of Milgrom: $\mu(|g|/a_0)g = g_{N \text{ baryons}} \text{ where } a_0 \sim cH_0 \sim 10^{-10} \text{ m s}^{-2}$ with $\mu(x) = x \text{ for } x \ll 1 => V_c^2/r \sim 1/r => V_c \sim \text{cst} + \text{BTF}$ $\mu(x) = 1 \text{ for } x \gg 1$

Does not work for galaxy clusters!!

Modified Newtonian Dynamics

- Milfrom's formula works in CDM and CDM-free galaxies (but not in galaxy clusters)
- If fundamental: a) fundamental property DM ?
 b) non-local modification of « inertia »?
 c) modification of gravity ?
 (+DM in clusters)

∇ . [μ ($|\nabla \Phi|/a_0$) $\nabla \Phi$] = 4 π G ρ

Modifying GR to obtain **MOND** in **static weak-field limit**: dynamical 4-vector field $U^{\alpha}U_{\alpha} = -1$, with free function in the action playing the role of μ (Bekenstein 2004; Zlosnik, Ferreira & Starkman 2007)

Testing modif. gravity in the MW

- Only one version of MOND
- Only the relation between the potential and the matter source is altered, so one can constrain the potential in the usual way
- Crucially depends on our knowledge of the baryonic distribution
- Depends on the exact choice for μ
- Then, the theory makes a unique and falsifiable prediction for the galactic potential

=> as an example let us use $\mu(x)=x/(1+x)$ and the Besançon model based on the synthesis approach

The « dark disk » from the Besançon model in MOND

- With $\mu(x)=x/(1+x)$, at the solar position one has $\Sigma_{eff} = 78 M_{*}pc^{-2}$ within z=1.1 kpc to compare with present constraints $\Sigma_{dyn} = 74+-6 M_{*}pc^{-2}$
- The effective radial density distribution in the disk has a scale-length enhanced by 25% (along the sun-GC axis, since model is non-axisymmetric)

Bienaymé, Famaey et al. 2009, A&A in press

=> measuring dynamically the disk surface density as a function of R with GAIA (but problem of extinction, maybe JASMINE too) should allow to constrain µ or even exclude MOND as modified gravity
=> quick way to exploit GAIA data

The vertical tilt of the velocity ellipsoid

- Angle δ = arctg[2 σ^2_{UW} / (σ^2_U σ^2_W)]/2 is linked to the disk scalelegnth and dark halo flattening (Bienaymé 2009)
- => compute orbits in axisymmetric Besançon model to measure the tilt as a function of z at solar position

(!streams and resonances!)

Conclusion

- MOND as a phenomenology *might* be telling us something about the nature of DM or about gravity
- We presented 3 quick tests to test MOND as modified gravity in the Milky Way with GAIA-like quality data
- This should allow to constrain µ or even exclude MOND as modified gravity
- Testing gravity crucially depends on our knowledge of the baryonic distribution (even more than when determining the DM distribution) => importance of :
 - star counts, stellar population synthesis
 - gaseous content (including molecular gas)
 - inhomogeneities (clusters, gas clouds)