

Laboratoire d'Étude du Rayonnement et de la Matière en Astrophysique

Collision rates and the determination of atmospheric parameters

Annie Spielfiedel and Nicole Feautrier (Paris-Meudon Observatory) Marie Guitou (Marne la Vallée University)

in collaboration with

Paul Barklem (Uppsala University) Andrey Belyaev (St Petersburg University) Frédéric Thévenin, Lionel Bigot (OCA) Roger Cayrel, GEPI

SF2A:Paris 2011

Collision rates and the determination of atmospheric parameters

Outline

Context

- Calculation of accurate collisional rates: Mg+H
- Comparison with approximate formulae: Drawin, Kaulakys
- Preliminary consequences on non-LTE modelling

Context

Non-LTE modeling implies that collisions compete with radiative processes for statistical equilibrium of level populations :

- the data for radiative processes has improved these last decades with the Opacity and Iron projects. The situation is significantly worse for collisional excitation mainly with H atoms dominant in cold stellar atmospheres.

- inelastic H collisional cross sections are usually estimated by the Drawin formula, but high accuracy measurements or quantum calculations show that the Drawin formula may overestimate the cross sections by a factor of 10 to six orders of magnitude

This implies :

- new calculations of H collisional cross sections and rates

Two steps for calculations of excitation rates by H atoms

• Determination of interaction potentials and coupling terms between the studied species and H:

quantum chemistry increasingly difficult for high excited levels

 Dynamics in these potentials classical or quantum mechanical approach

Already done: Li+H, Na+H Under way: Mg+H, O+H In the future: Ca+H, Call+H and possibly Fe+H(?)

Potential energy curves and coupling terms for Mg+H

During the collision, the two atoms form temporarily a quasi molecule

6 Mg levels considered: E< 6eV

3s² (¹S), 3s3p (³P), 3s3p (¹P), 3s4s (³S), 3s4s (¹S), 3s3d (¹D)

Mg+H Molecular states (quasi molecules):

Mg (¹S, ¹P, ¹D) + H (²S) : ${}^{2}\Sigma^{+}$, ${}^{2}\Pi$, ${}^{2}\Delta$ Mg(³S, ³P) + H (²S) : ${}^{2}\Sigma^{+}$, ${}^{2}\Pi$, ${}^{4}\Sigma^{+}$, ${}^{4}\Pi$

→ 8 ${}^{2}\Sigma^{+}$; 5 ${}^{2}\Pi$; 2 ${}^{2}\Delta$; 2 ${}^{4}\Sigma^{+}$; 1 ${}^{4}\Pi$ calculated states: potential energy curves and related couplings which induce collisional transitions

Mg + H potentials

Mg + H potentials

All ${}^{2}\Sigma^{+}$ states are highly perturbed by the Mg⁺-H⁻ ionic state leading to ionisation/mutual neutralisation reaction: Mg+H <--> Mg⁺+H⁻

Mg + H potentials and coupling terms

$^{2}\Sigma^{+}$ Potentials

Guitou, Spielfiedel, Feautrier, Chem. Phys. Lett. 488, 145, 2010

T = 4000.00 K

initial/final 3s ¹ S states 3s ¹ S		3p ³ Po	3p ¹ Po	4s ³ S	4s ¹ S	3d ¹ D	ionic
		1.67e-17	9.32e-20	5.37e-20	2.14e-20	6.31e-21	5.05e-22
3p ³ Po	4.87e-15		2.76e-13	7.95e-14	2.07e-14	4.35e-15	1.47e-16
3p ¹ Po	1.05e-14	1.07e-10		5.21e-11	7.88e-12	2.26e-12	1.84e-13
4s ³ S	5.26e-14	2.67e-10	4.52e-10		1.38e-10	4.11e-11	9.14e-12
4s ¹ S	1.46e-13	4.83e-10	4.75e-10	9.56e-10		1.81e-09	8.64e-10
3d ¹ D	3.72e-14	8.79e-11	1.18e-10	2.48e-10	1.57e-09		1.73e-10
ionic	1.10e-13	1.10e-10	3.57e-10	2.04e-09	2.78e-08	6.42e-09	

• For excitation: the dominant rate coefficient are those to the closest final state

• Large rates for transitions between excited states even for non-radiatively allowed transitions

• Important contribution of ionisation/mutual neutralisation

Comparison with approximative formulae

Drawin formula: extension of the classical formula for ionisation of atoms by electron impact, commonly used for allowed transitions
→ Gives collision rates proportional to the oscillator strength of the transition

Kaulakys formula: free electron model applicable to Rydberg atoms

←R_{Drawin}/R_{quantum}

← R_{Drawin}/R_{Kaulakys}

The Drawin formula overestimates the rate coefficients by several orders of magnitude

Comparison with Drawin formula

Na+H rate coefficients as functions of the energy difference (ΔE) of the levels

←Quantum

- The rate coefficients decrease for increasing ΔE
- For allowed transitions: the Drawin formula overestimate the rate coefficients by several orders of magnitude

For forbidden transitions: the Drawin formula Is inapplicable

Same trends found for Li+H and Mg+H collisions

so: in the absence of accurate data, the rate coefficients are often estimated from the Drawin formula with a corrective factor $0 \le S_{H} \le 1$

Barklem, Belyaev, Guitou, Feautrier, Gadea, Spielfiedel, A&A in press, 2011

Consequences on non-LTE modelling (1)

• Non-LTE modelling implies competition between radiative and collisional processes for both excitation and ionisation

- The consequences on abundances depend non linearly on:
 - the physical conditions of the star: T_{eff} , g, [Fe/H]...
 - radiative transfer
 - 1D or 3D non-LTE
 - the number of atomic states included in the model
 - the line considered for the diagnostics, ...

• a priori, collisions should decrease the non-LTE effects on populations, but this is not so simple as ionisation/mutual neutralisation contribute as well.

So, to date, no general conclusion is evident, but some trends are available from a number of recent studies : Li, Na, C, O

Consequences on non-LTE modelling (2)

Li I line formation (code MULTI) - departure coefficients from LTE (N/N_{LTE}) with optical depth for low lying Li levels (2s,2p,3s): full line without H collision, dashed line with H collisions

The analysis of the results show:

- due to the low collisional excitation rates for the lowest levels, the results are not very sensitive to the details of the H-collisional rates

H-collisions push the lowest Li- states towards
LTE and even superpopulation (2s) due to
the Li(3s)+H <---> Li⁺+H⁻ reaction

Solar 1D model with $\log_{Li}=1.1$ $T_{eff} = 5777$ Log g = 4.44 [Fe/H]=0.0

Consequences on non-LTE modelling (3)

Li I line formation (continued) : with H-collisions wH, no H-collisions nH

Predicted flux equivalent widths (in mA) for the 670.8nm line and 1D and 3D modelling

			3D				
Star	[Fe/H]	$W_{\lambda}(LTE)$	W _λ (NLTE) nH	$W_{\lambda}(NLTE)$ wH	$W_{\lambda}(LTE)$	W _λ (NLTE) nH	W _λ (NLTE) wH
Sun	0.0	0.40	0.34	0.38	0.55	0.37	0.40
HD 140283	-2.5	2.40	2.18	2.66	3.84	1.96	2.35

• For this resonance line, H-collisions have small effects for the Sun but larger effects for metal-poor stars due to ionisation/mutual neutralisation reaction

Importance of 3D modelling versus 1D

Consequences on non-LTE modelling (5)

C I line formation: transition $2p3s^{3}P^{0}-2p3p^{3}P$, $\lambda=910$ nm

Variation of non-LTE abundance corrections for 34 halo stars: with (a):Teff; (b): log g; (c): [Fe/H] empty triangles: S_H =0, filled triangles: S_H =1

→large collisional non-LTE effect for this line between two excited states

Fabbian, Asplund, Carlsson, Kiselman, A&A, 458, 899 (2006)

Consequences on non-LTE modelling (6)

O I IR triplet line formation: transition $2p^33s$ ${}^5S^0-2p^33p$ 5P , λ =777 nm NonLTE abundance corrections versus metllicity for 3 stars: Circles: Teff=5780K, log g=4.44; triangles: Teff=6500K, log g=4; squares:Teff=6500k, log g=2 Dashed lines: no collisions, solid lines: with collisions Drawin S_H=1

→ At low metallicity (large H density), collisions with H atoms play a major role

Fabbian, Asplund, Barklem, Carlsson, Kiselman, A&A, 500, 1221 (2009)

- H collisions are of particular importance for abundance determination:
 - of low metallicity stars
 - using lines involving excited states
- importance of 1D/3D modelling
- preliminary results on Li, Na and Mg show:
 - a large overestimation of the rate coefficients using the Drawin formula
 - importance of ionisation/mutual neutralisation

• trends to be confirmed for other atoms: calculations of H-atom collisional rates with O I are in progress, in the future Ca I, Ca II

• 1D/3D modelling for Mg in progress (F. Thévenin, L. Bigot)

Acknowledgments

AS GAIA, PNPS

Institut de chimie du CNRS

Computer centers: Observatoire de Paris, Université Marne la Vallée, IDRIS

and the scientific GAIA-SAM (Stellar Atmosphere Modelling) team