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Outline

• Context

• Calculation of accurate collisional rates: Mg+H

• Comparison with approximate formulae: Drawin, Kaulakys

• Preliminary consequences on non-LTE modelling

Collision rates and the determination
of atmospheric parameters



Context

Non-LTE modeling implies that collisions compete with radiative processes
for statistical equilibrium of level populations   :

- the data for radiative processes has improved these last decades
with the Opacity and Iron projects. The situation is significantly worse for
collisional excitation mainly with H atoms dominant in cold stellar
atmospheres.

- inelastic H collisional cross sections are usually estimated by the
Drawin formula, but high accuracy measurements or quantum calculations
show that the Drawin formula may overestimate the cross sections by a
factor of 10 to six orders of magnitude

This implies :
-  new calculations of H collisional cross sections and rates

Non-LTE calculations



Two steps for calculations of excitation rates by H atoms

 Determination of interaction potentials and coupling terms between the
studied species and H:

 quantum chemistry increasingly difficult for high excited levels

 Dynamics in these potentials
 classical or quantum mechanical approach

Already done: Li+H, Na+H
Under way: Mg+H, O+H
In the future: Ca+H, CaII+H and possibly Fe+H(?)

Collisional rates



Potential energy curves and coupling terms for Mg+H

During the collision, the two atoms form temporarily a quasi molecule

6 Mg levels considered: E< 6eV

3s2 (1S), 3s3p (3P), 3s3p (1P), 3s4s (3S),
3s4s (1S), 3s3d (1D)

Mg+H Molecular states (quasi molecules):

Mg (1S, 1P, 1D) + H (2S) : 2Σ+, 2Π, 2Δ
Mg(3S, 3P) + H (2S) : 2Σ+, 2Π, 4Σ+, 4Π

 8 2Σ+ ; 5 2Π ; 2 2Δ ; 2 4Σ+ ; 1 4Π calculated states: potential energy
curves and related couplings which induce collisional transitions

Mg + H interaction potentials





Mg + H potentials
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Mg + H potentials

  

All 2Σ+ states are highly perturbed by the Mg+-H- ionic state leading
to ionisation/mutual neutralisation reaction: Mg+H <--> Mg++H-



Mg + H potentials and coupling terms

 

2Σ+ Potentials 2Σ+ Coupling terms

Guitou, Spielfiedel, Feautrier, Chem. Phys. Lett. 488, 145, 2010



T =       4000.00 K

 initial/final 3s 1S    3p 3Po    3p 1Po     4s 3S     4s 1S     3d 1D      ionic
 states
    3s 1S               1.67e-17  9.32e-20  5.37e-20  2.14e-20  6.31e-21  5.05e-22

    3p 3Po    4.87e-15            2.76e-13  7.95e-14  2.07e-14  4.35e-15  1.47e-16

    3p 1Po    1.05e-14  1.07e-10            5.21e-11  7.88e-12  2.26e-12  1.84e-13

     4s 3S    5.26e-14  2.67e-10  4.52e-10            1.38e-10  4.11e-11  9.14e-12

     4s 1S    1.46e-13  4.83e-10  4.75e-10  9.56e-10            1.81e-09  8.64e-10

     3d 1D    3.72e-14  8.79e-11  1.18e-10  2.48e-10  1.57e-09            1.73e-10

     ionic    1.10e-13  1.10e-10  3.57e-10  2.04e-09  2.78e-08  6.42e-09

Mg+H rate coefficients

• For excitation: the dominant rate coefficient are those to the closest final state
• Large rates for transitions between excited states even for non-radiatively allowed transitions
• Important contribution of ionisation/mutual neutralisation

Guitou, Belyaev, Barklem, Spielfiedel, Feautrier, 2011



Drawin formula: extension of the classical formula for ionisation of atoms by
electron impact, commonly used for allowed transitions
Gives collision rates proportional to the oscillator strength of the transition

Kaulakys formula: free electron model applicable to Rydberg atoms

Comparison with approximative formulae

Na+H rate coefficients as functions of the energy difference(ΔE) of the levels, T=6000K

 RDrawin/RKaulakys

RDrawin/Rquantum

The Drawin formula overestimates the rate
coefficients by several orders of magnitude

Lind et al. A&A 528, A103, 2011



Comparison with Drawin formula

Na+H rate coefficients as functions of the energy difference
(ΔE) of the levels

Quantum

• The rate coefficients decrease for increasing ΔE
• For allowed transitions: the Drawin formula
overestimate the rate coefficients by several orders
of magnitude
• For forbidden transitions: the Drawin formula
Is inapplicable
• Same trends found for Li+H and Mg+H collisions

so: in the absence of accurate data, the rate
 coefficients are often estimated from the Drawin
formula with a corrective factor 0≤SH≤1

Drawin

Barklem, Belyaev, Guitou, Feautrier, Gadea, Spielfiedel, A&A in press, 2011



• Non-LTE modelling implies competition between radiative and collisional processes
for both excitation and ionisation

• The consequences on abundances depend non linearly on:
- the physical conditions of the star: Teff, g, [Fe/H]…
- radiative transfer
- 1D or 3D non-LTE
- the number of atomic states included in the model
- the line considered for the diagnostics, …

• a priori, collisions should decrease the non-LTE effects on populations, but this is
not so simple as ionisation/mutual neutralisation contribute as well.

So, to date, no general conclusion is evident, but some trends are available
from a number of recent studies : Li, Na, C, O

Consequences on non-LTE modelling (1)



Consequences on non-LTE modelling (2)

Li I line formation (code MULTI)
- departure coefficients from LTE (N/NLTE ) with optical depth for

low lying Li levels (2s,2p,3s): full line without H collision, dashed line with
H collisions

Solar 1D model
with logεLi=1.1
Teff = 5777
Log g = 4.44
[Fe/H]=0.0

HD 140283 1D model
with logεLi=1.8
(metal poor sub giant)
Teff = 5690
Log g = 3.87
[Fe/H]=-2.5

The analysis of the results show:

- due to the low collisional excitation rates for
the lowest levels, the results are not very
 sensitive to the details of the H-collisional rates

- H-collisions push the lowest Li- states towards 
LTE and even superpopulation (2s) due to
 the Li(3s)+H <---> Li++H- reaction

Barklem, Belyaev, Asplund, A&A, 409, L1 (2003)



Predicted flux equivalent widths (in mA) for the 670.8nm line and 1D and 3D modelling

1D 3D

Star        [Fe/H]    Wλ(LTE)  Wλ(NLTE)  Wλ(NLTE)   Wλ(LTE)  Wλ(NLTE)  Wλ(NLTE)
nH wH       nH          wH

Sun   0.0 0.40 0.34   0.38     0.55    0.37       0.40

HD  -2.5 2.40 2.18   2.66     3.84    1.96       2.35
140283 

Consequences on non-LTE modelling (3)

Li I line formation (continued) : with H-collisions wH, no H-collisions nH

• For this resonance line, H-collisions have small effects for the Sun but larger effects
for metal-poor stars due to ionisation/mutual neutralisation reaction
• Importance of 3D modelling versus 1D

Barklem, Belyaev, Asplund, A&A, 409, L1 (2003)



Variation of non-LTE abundance corrections for 34 halo stars:
with (a):Teff; (b): log g;  ( c): [Fe/H]
empty triangles: SH=0, filled triangles: SH=1

Consequences on non-LTE modelling (5)

C I line formation: transition 2p3s3P0-2p3p3P, λ=910 nm

Fabbian, Asplund, Carlsson, Kiselman, A&A, 458, 899 (2006)

large collisional non-LTE effect for this line between two excited states



NonLTE abundance corrections versus metllicity for 3 stars:
Circles: Teff=5780K, log g=4.44; triangles: Teff=6500K, log g=4; squares:Teff=6500k, log g=2
Dashed lines: no collisions, solid lines: with collisions Drawin SH=1

 At low metallicity (large H density), collisions with H atoms play a major role

Consequences on non-LTE modelling (6)

Fabbian, Asplund, Barklem, Carlsson, Kiselman, A&A, 500, 1221 (2009)

O I IR triplet line formation: transition 2p33s 5S0-2p33p 5P, λ=777 nm



Concluding remarks

• H collisions are of particular importance for abundance determination:
- of low metallicity stars
- using lines involving excited states

• importance of 1D/3D modelling

• preliminary results on Li, Na and Mg show:
-  a large overestimation of the rate coefficients using the Drawin formula
- importance of ionisation/mutual neutralisation

• trends to be confirmed for other atoms: calculations of H-atom collisional rates with O I are in
progress, in the future Ca I, Ca II

• 1D/3D modelling for Mg in progress (F. Thévenin, L. Bigot)
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