

Study of the stellar populations of the Milky Way in CFHTLS fields

Mélanie GUITTET

(GEPI Team, Meudon Observatory)

SF2A, Paris, June, 20-23, 2011

Brief summary

Aim : To obtain new constraints on the thick disc and then to generate a new model of the thick disc.

To improve our knowledge of the thick disc formation.

Method : We use new data of the CFHTLS and simulations obtained with the Besançon model. We analysed the metallicity distribution perpendicular to the galactic plane.

Results

: The data do not confirm the standard thick disc either in Hess diagrams or metallicity distributions.

Canada-France-Hawaii Telescope Legacy Survey (CFHTLS)

- 3.6 m telescope, coordinated by the National Research Council of Canada (NRC), Centre National de la Recherche Scientifique (CNRS) and Hawaii university
- ~ 5 years of data acquisition and calibration (2003 2008) using MegaCam (1°x1°, 340 M pixels) in CFHT
- 3 surveys :
 - 1) Deep fields : 4 fields = 4 deg², SuperNovae Legacy Survey (SNLS), early universe
 - 2) Wide fields : 4 fields= 170 deg², large scale structures, galaxy distribution, stellar populations
 - Very Wide fields : ecliptic band = 410 deg², solar system (Kuiper belt), g, r, i

 \rightarrow Observations : filter set (u*, g', r', i', z')

Canada France Hawaï Telescope Legacy Survey (CFHTLS)

	Sky (deg²)	1 (°)	b (°)
W1	72	172	- 61
W2	25	232	26
W3	49	99	58
W4	25	63	- 42

Choice : * High galactic latitude → less dust extinction * Larger fields

Data used in this work

- . CFHTLS W1 and W3
- . SDSS stars in the same fields (field associated to W1 covers 4/5 of W1- CFHTLS)
- Simulations from the Besançon model (Robin et al 2003)
- → transformations (u*, g', r', i', z') \longrightarrow (u, g, r, i, z) SDSS → We complement CFHTLS with SDSS at bright magnitudes

Hess diagrams, W3, before « mixing »

Final catalogs

After assembling SDSS and CFHTLS data, we obtain :

SDSS - CFHTLS

W3 : Hess diagram, new catalog generated

In W1 SDSS data represent only 15% of the sample In W3 they represent 30%

Comparisons to simulations

0

з

0.5

0.0

-0.5

-1.0

- -1.5

W1 Besançon Model with errors, ~ 63 deg²

Metallicity and photometric distance

[Fe/H] = A + Bx + Cy + Dxy + Ex² + F y² + Gx² y + Hxy² + Ix³ + Jy³(Bond et al 2009)

- x = u g, y = g r
- (A J) = (-13.13, 14.09, 28.04, -5.51, -5.90, -58.68, 9.14, -20.61, 0.0, 58.20)

Z = D sin(b), D the distance to the Sun

Photometric distances :

 $M_{r} = M_{r0} + \Delta M_{r}$ • $M_{r0} = -5.06 + 14.32^{*}(g-i) - 12.97^{*}(g-i)^{2} + 6.127^{*}(g-i)^{3} - 1.267^{*}(g-i)^{4} + 0.0967^{*}(g-i)^{5}$ • $\Delta M_{r} = 4.5 - 1.1^{*}[Fe/H] - 0.18^{*}[Fe/H]^{2}$

Bond et al 2009, Difference in metallicities in DR6 and DR7 as a function of DR7

Comparisons to simulations of Besançon model

3 distinct populations : Thin and thick discs, halo

• Scale height $h_7 = 800 \text{ pc}$

thin disc local density

• Age = 11 Gyr

Thick disc Besançon model

- Besançon model : Standard model different from data

- Model shows an evident distinct thick disc which doesn't show up in the data

Possible effects : the absorption

A comparison of absorption values of several authors (see Tab 1.) leads to the conclusion that **the estimate of extinction in the CFHTLS W1 & W3 fields is uncertain. (Tab 1)**

		W1	W3
Schlegel et	al. (1998	3) 0.087	0.038
Hakkila et al.	(1997)	0.054 ± 0.176	0.083 ± 0.233
Arenou et al.	(1992)	0.100 ± 0.155	0.057 ± 0.150
ones et al.	(2011)	0.113 ± 0.191	0.120 ± 0.187

Tab. 1 : Av extinction values in W1 and W3 from different models,

The effect of extinction was estimated by calculating errors on distances and metallicities (Tab 2.).

 Dist
 [Fe/H] (dex)

 W1
 W3
 W1
 W3

 Schlegel et al. (1998)
 10%
 4%
 0.02
 0.007

 Jones et al (2011)
 14%
 15%
 0.015
 0.02

Tab. 2 : Extinction effect. Errors on distances and metallicities are given for W1 and W3.

Dust extinction not corrected

Possible effects : the metallicity gradient

We added to the thick disk simulated stars a metallicity gradient of – 0.068 dex/kpc (Katz et al., 2011).

The agreement between the model and the data in (z – metallicity) distributions has not been improved.

A scale height problem?

The allowed range of thick disc scale heights is large, due to (hz, in-plane density) degeneracy.

Chen, B et al, 2001, Correlation between scale height and density in the thick disc (SDSS data at the poles)

Discrete, exponential thick discs with H_z in (750 -1200 pc) do not reflect correctly CFHTLS – SDSS data

<u>Alternative thick disc</u>: $H_{z} = 1200 \text{ pc}, 2\%$ normalization, <[Fe/H]> = - 0.5 dex

Thin disc : $H_z = 250$ pc, $\langle Fe/H \rangle = -0.1$ dex Halo : $H_z = 3500$ pc (exponential), $\langle Fe/H \rangle = -1.5$ dex

The CFHTLS Wide fields do not seem to show a thick disk component represented by a distinct pattern between 1 and 4-5 kpc in the z-metallicity distribution as predicted by a standard Milky Way star count model.

Perspectives :

• Create a new model of stellar population synthesis with a detailed description of the HR diagram in order to test a set of parameters of the thick disk. We aim to achieve a good agreement between the data and the model on large scales and in the solar neighborhood.

• Make then an analysis with larger data sets such as the SDSS - DR8.