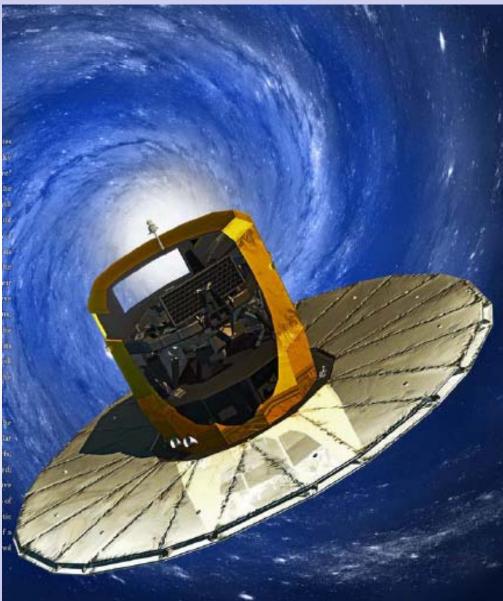
Metrological Aspect of Gaia

F. Mignard

Observatory of the Côte d'Azur, Nice.



SF2A, Besançon, 30 June 2009, F. Mignard

Outline

- Gaia in ultra brief
- On-board space metrology frames
- On-board and ground time metrology

- End of mission
- Sky-averaged standard errors for GOV stars (single stars, no extinction)
- Main point for this talk: parallax accuracy

V magnitude	6 - 13	14	15	16	17	18	19	20	mag
Parallax	8	13	21	34	55	90	155	275	μας
Proper motion	5	7	11	18	30	50	80	145	µas/an
Position @2015	6	10	16	25	40	70	115	205	μας

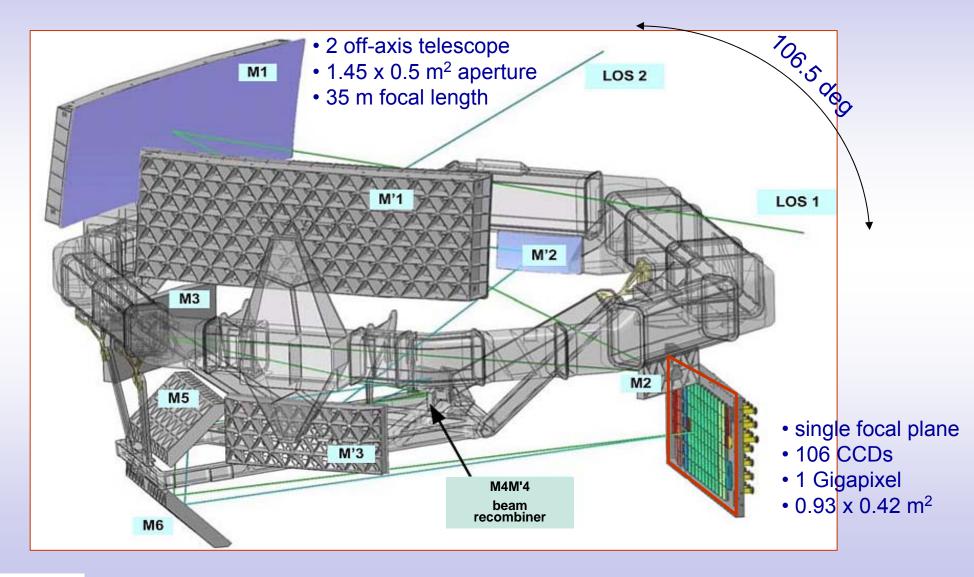
but also: very distant sources should exhibit a zero parallax on the average

10 µas: Incredibly small !

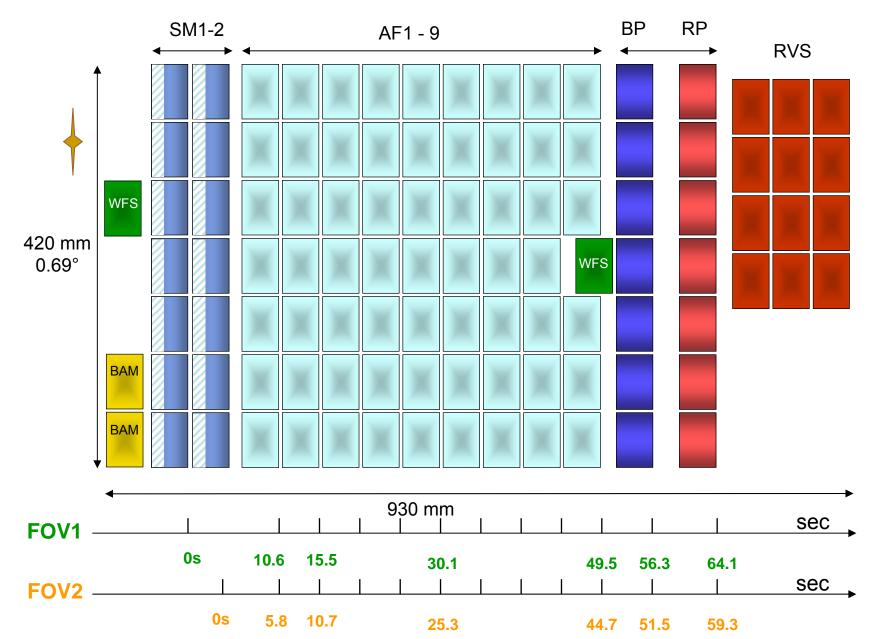
- 0.3 mm displacement on the Earth
- edge-on sheet of paper @ 2000 km
- 1 hair @ 1000 km
- a coin on the Moon
- Displacement of a 100 mas/yr star in one hour

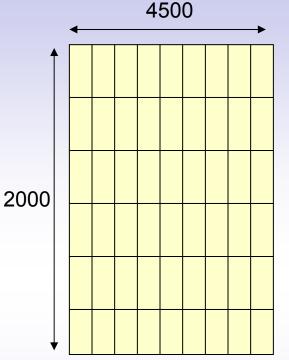
10 *µ*as

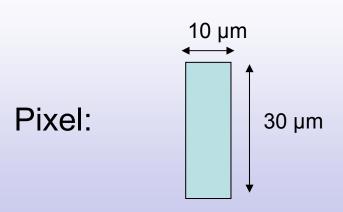
400 000 km


• Motion of a fast minor planet in 100 μ s.

Gaia : telescopes and detector




Focal Plane Assembly

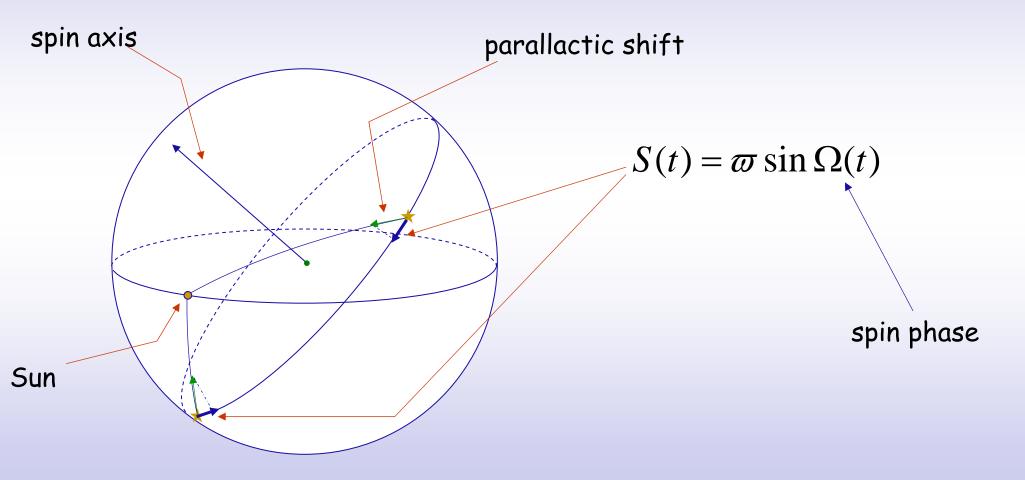


Gaia : CCD

- Identical structure for every CCD
- Manufactured by the UK company e2v
- Contract granted before formal approval of Gaia
- 106 CCDs in total, $4.5 \times 6.0 \text{ cm}^2$ each
- Works in TDI mode

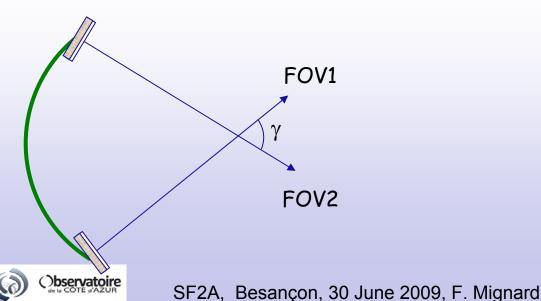
Basic Angle Monitoring

BAM


Basic angle stability on-board monitoring

- Systematic effect in zero- parallax has a serious scientific impact
- A globular cluster distance is determined by averaging the parallaxes over individual stars
 - + d ~ 5 10 kpc $\,$, ϖ ~ 100 μas
 - + n ~ 10⁴ stars V ~ 18 $~\sigma_{\varpi}~$ ~ 100 μas per star
 - Average distance to $\sigma_{\rm m}$ /n^{1/2} ~ 1 μ as
 - if no systematic larger than 0.5 μas
- LMC/SMC d ~ 50 kpc, ϖ ~ 20 μ as
 - \bullet n ~ 10° stars V ~ 19-20 $~\sigma_{\varpi}~$ ~ 200 μas per star
 - + Average distance to σ_{ϖ} /n^{1/2} ~ 0.2 $\mu as,~0.1\%$ accuracy
 - if no systematic larger than $0.1 \ \mu$ as
- **Relativistic PPN parameter** γ
 - \bullet Correlated (r \sim 0.9) with the zero-parallax
 - PPN γ to 2x10⁻⁶ if zero parallax < 0.01 μ as

Parallactic signal: projection of the parallax effect on the scan circle



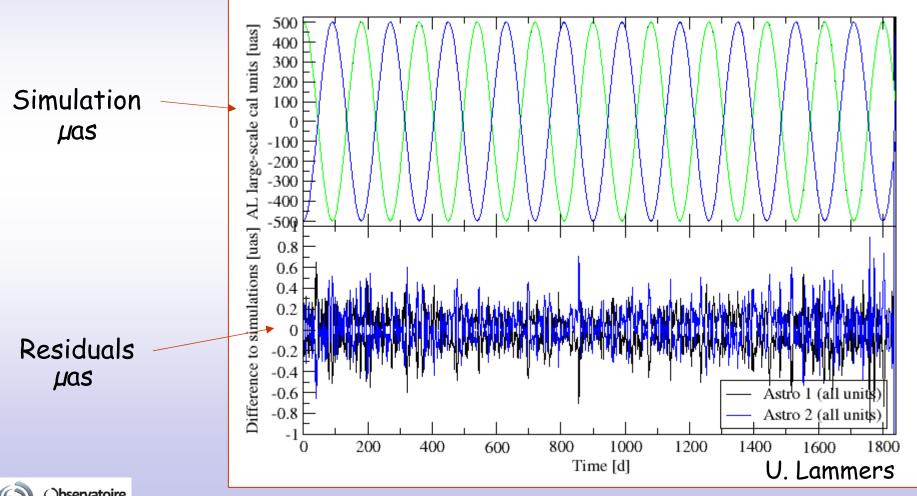
Consequences

- Random changes in the basic angle propagate to astrometric measurements + typically σ_{π_ran} ~ 0.15 σ_{γ_ran}
- Systematic error in the basic angle propagate also to parallax
 - systematic means here correlated with the geometry of observation
 - orientation with respect to the Sun
 - correlated with the thermal behaviour of the instrument
 - A 6-hour periodic change in the BA yields a systematic zero parallax effect
 - typically σ_{π_sys} ~ 0.8 σ_{γ_sys}

BA: Basic angle = angle between the two fields of view

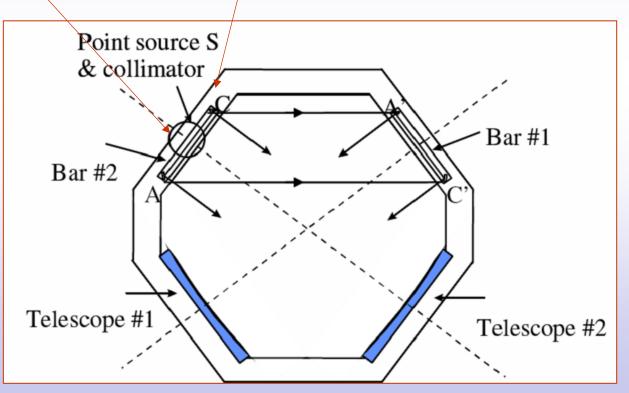
• γ = 106.5 °

- This is the angular yardstick of Gaia
 - together with the full 360° revolution
- γ must be known very accurately
- Over periods > 6h, is determined by the astrometric solution
 - this is one of the fundamental calibration parameter
 - Much more difficult for higher frequencies
 - Impossible for 1/S → mimics perfectly constant parallax shift


- Must be stable over shorter timescale
 - requirements:
 - stability better than 7 μas RMS for random part \rightarrow 1 μas on parallax
 - stability better than 4 μ as for systematic part (~ spin period)
 - should be monitored to check that stability level
- This is achieved normally with thermal stability
 - should be few 10 μ K with passive insulation
- However this not enough to keep the parallax offset < 0.1 μ as
 - a passive accurate monitoring is required
 - this must be processed with the science data

Long term BA fluctuation

- Simulated BA variation
 - 1 mas amplitude, 180 days period
- Recovered in global astrometry solution to sub-µas accuracy

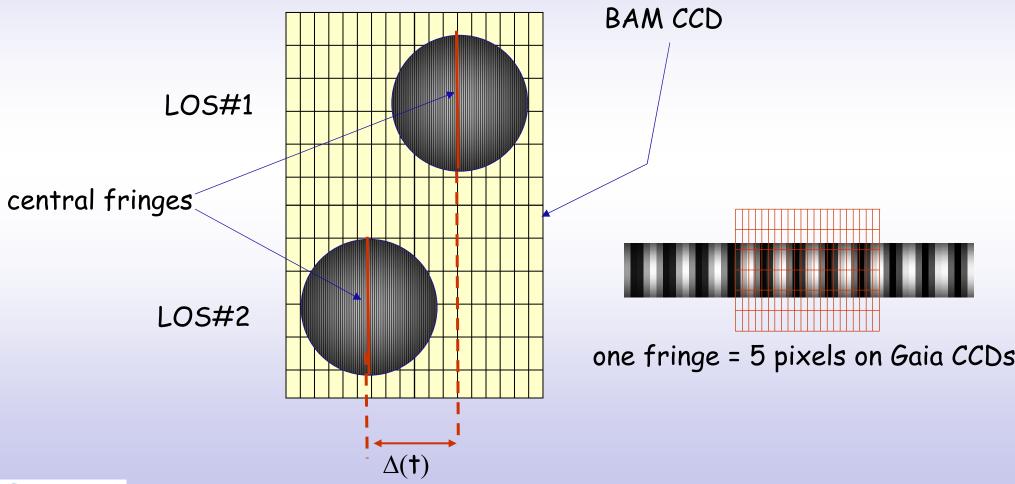


SF2A, Besançon, 30 June 2009, F. Mignard

Basic Angle Monitoring (BAM)

- Interferometer producing two sets of fringes
- Point source (laser diode) mounted on a rigid bar
 - flashes of 150 μ s ; 5x10⁹ photons
- Two beams to telescope #1 and two beams to telescope #2
 - each path produces its own fringe patterns o a CCD

- System invariant to rigid rotation, uniform thermal variations
- Point source (laser diode) mounted on a rigid bar
 - flashes of 150 µs; 5x10⁹ photons
- Two beams to telescope #1 and two beams to telescope #2
 - each path produces its own fringe patterns
- Fringes spots located with centroiding algorithm
 - + 25 measures with 4.5s interval to produce one data point


OPD	Fringe	Angular	FPA	FPA
μm		mas	μm	рх
0.8	1	300	50	5

Measurement principle

- The system sees the relative variation of the two LOS
- It says nothing about the value of the basic angle

Central fringe location

Estimate using all the fringes information

$$\sigma(\xi) \sim \frac{1}{2\pi} \frac{\lambda}{BN^{1/2}} \qquad \begin{array}{l} B = 60 \,\mathrm{cm} \\ \lambda = 850 \,\mathrm{nm} \\ N = 5 \mathrm{x10}^9 \end{array} \right\} \Rightarrow \sigma(\xi) \sim 0.5 \,\mu as$$

OPD	Fringe	Angular	FPA	FPA
μm		mas	μm	рх
0.8	1	300	50	5
pm		µas	pm	рх
1.3	2x10 ⁻⁶	0.5	80	10-5

- Proven feasible on optical bench
- With repeated measures every 4.5 s, should meet the requirements

Time Metrology

Timing on board Relation to astronomical timescales

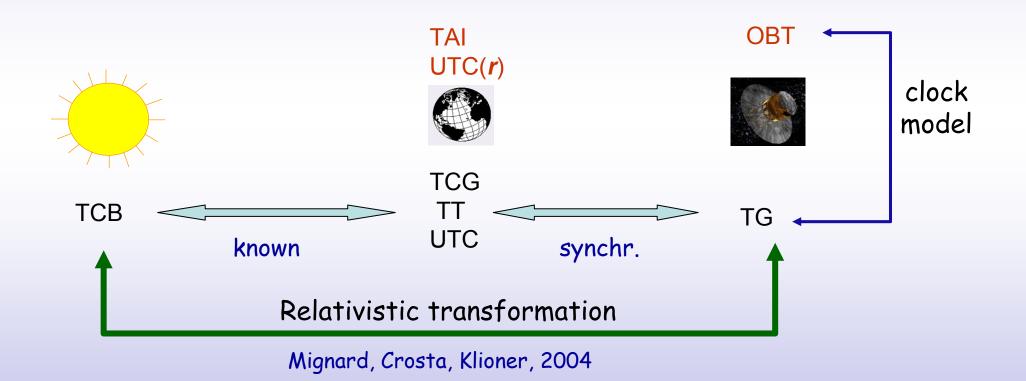
- Time stamping accuracy is high for Gaia
 - The requirements in the timing of on-board event to 1 μ s
 - Clock stability over ~ 1 day of 10⁻¹²
 - daily link with ground stations over ~8 h
 - One Rb clock on-board
- Objective: link between on-board time and astronomical time to 0.1 μ s
 - Clock model and clock monitoring
 - relationship between OBT (clock delivered time) and TG (Gaia proper time)
 - Relativistic modeling of the time metrology chain
 - events timed in UTC, TT, TCG, TCB, TG
 - Details depends on Gaia position and velocity
- Synchronisation sessions every day during visibility period
 - Synchronisation event triggered on-board every ~ s
 - real time downlink in current TM frame

- Operations on board are primarily charge shifts on TDI periods
 - done every 0.9828 ms over 5 years
- Observations must be time tagged on board
 - each CCD transits is a time of crossing of a fiducial line
- Time is generated by a 20 MHz master clock
 - + highest resolution of τ = 50 ns
 - \bullet all other intervals are integral multiples of τ
- Two different requirements: Stability and accuracy

First requirement: stability

- Every timing (frequency or time stamp) are derived from on master clock
- \blacksquare The on-board time generation must be stable \rightarrow constant frequency
 - basic tick intervals (eg for TDI operation) must be of constant duration during CCD transit
 - not immediately related to the SI second at this stage
 - TDI operation depends on the spin rate derived from on-board attitude some time earlier
 - complex interplay between the two effects
- The on-board clock is free (no contact with the ground) 16h/day
 - this interval could grow larger in case of problem with transmission
 - The whole on-board system relies on the clock stability between two synchronisations

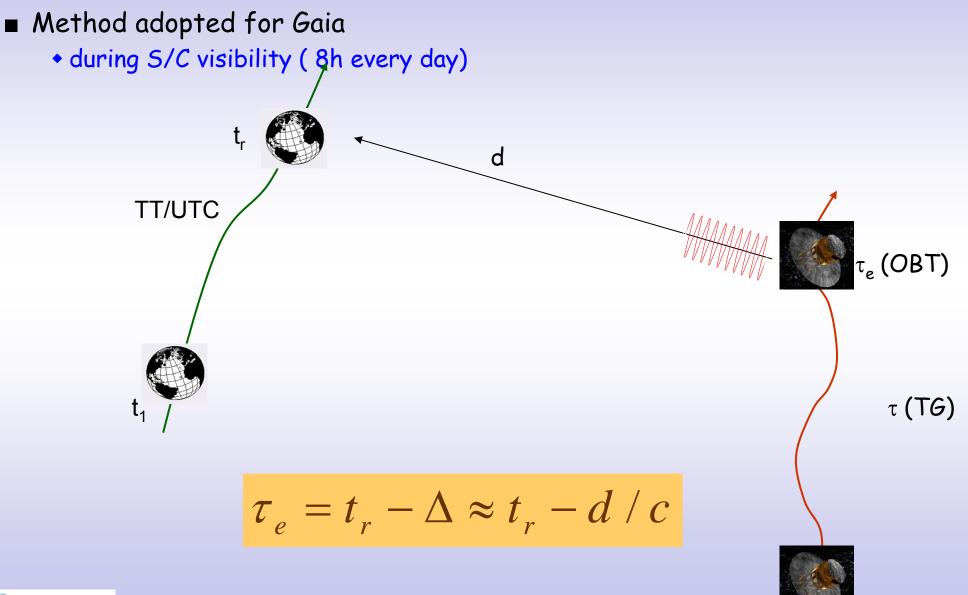
$$\sigma(\tau) < 5 \,\mathrm{x} \, 10^{-10} \, / \, \tau^{1/2}$$



Second requirement: accuracy

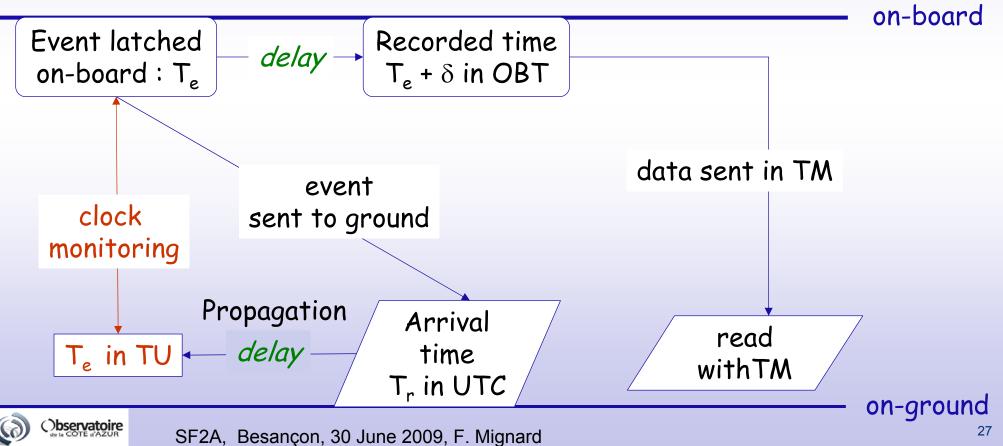
- accuracy refers to the ability of the clock to beat the second
- One must be able to convert clock reading into SI second on ground
 on-board operations require only a stable clock.
- The accuracy constraint is more on the link than on the clock itself
 would be on the clock if left free for a long period of time
- Normally synchronisation data with the ground every day
 - but one must rely on the clock behaviour outside these periods
 - typically 16h per day.
 - this is again a stability requirements once it has been syntonised
- Requirements: Derived from the needs of final science product
 - most demanding: astrometry of fast moving solar system objects
- One needs to establish transformation from on-board time to astronomical time to 0.1 μ s (with factor 10 margin)

- Modelling and DP in TCB
- on-board clock delivering a realisation of TG (\rightarrow OBT)
- tracking and ground-based timing in UTC



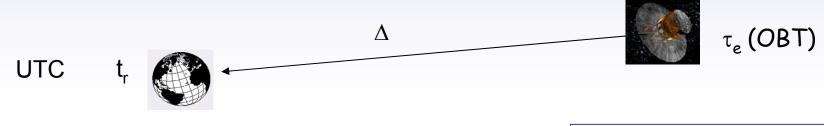
Time scales in the Gaia operation and processing

- TCB is the coordinate time of BCRS.
 - TCB is intended to be the time argument of final Gaia catalogue, etc.
 - TCB is defined for any event in the solar system and far beyond it.
- TT is a linear function of the coordinate time of GCRS.
 - TT will be used to tag the events at the Earth-bound observing sites
 - The mean rate of TT is close to the mean rate of an observer on the geoid.
 - UTC=TT+32.134 s + leap seconds
- TG is the proper time of Gaia.
 - TG is an ideal form of OBT (an ideal clock on Gaia would show TG)
 - TG is an intermediate step in converting OBT into TCB
- OBT is a realization of TG with all technical errors...
 - OBT will be used to tag the observations



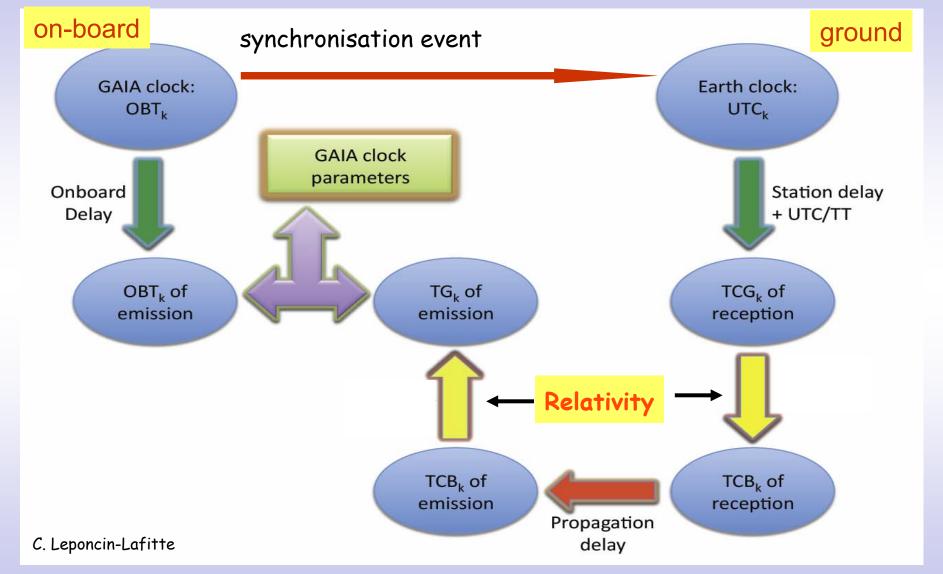
On-way Gaia clock synchronisation

Gaia DPAC


- Production of an synchronisation event on board $\rightarrow T_e$
- Event strobe sent to telemetry packet immediately
- It is time tagged on board on near real time → $T_e + \delta$ on-board clock
- Data sent with TM
- Received on the ground after propagation $\rightarrow T_r$ on-ground clock

Full time transfer equation

Based on the computation of propagation delay
 needs several calibrations and significant modelling

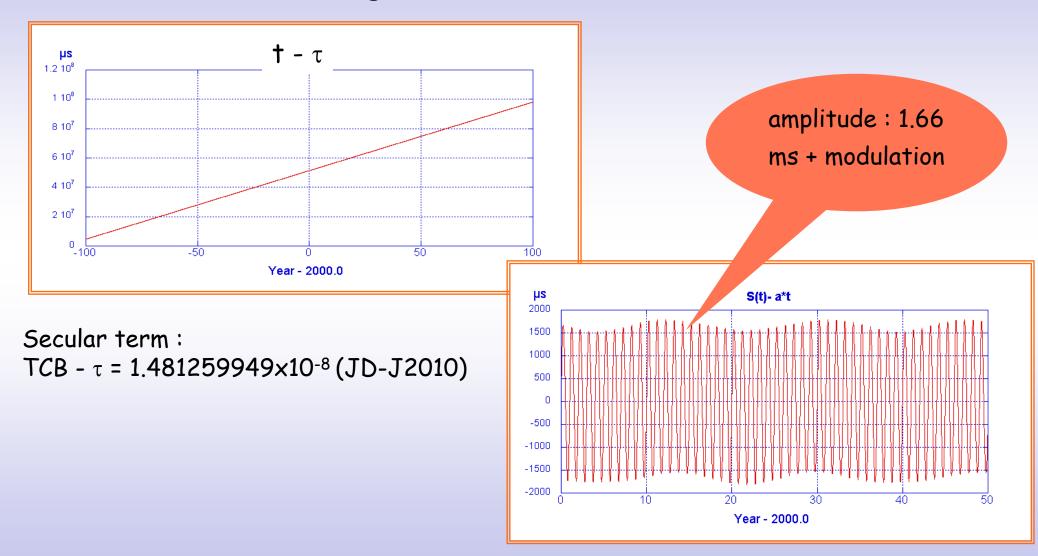

$$\Delta = d / c + \delta_T + \delta_I + S + R$$

$$R \approx \int \left(\frac{v^2}{2c^2} + \frac{\Delta U}{c^2}\right) dt$$

S = Shapiro delay

- For Gaia d/c ~ 5s
 - D to 1 µs → d to 0.3 km !
 - with current tracking performance OK in radial direction
 - but details depend of the tracking error spectrum

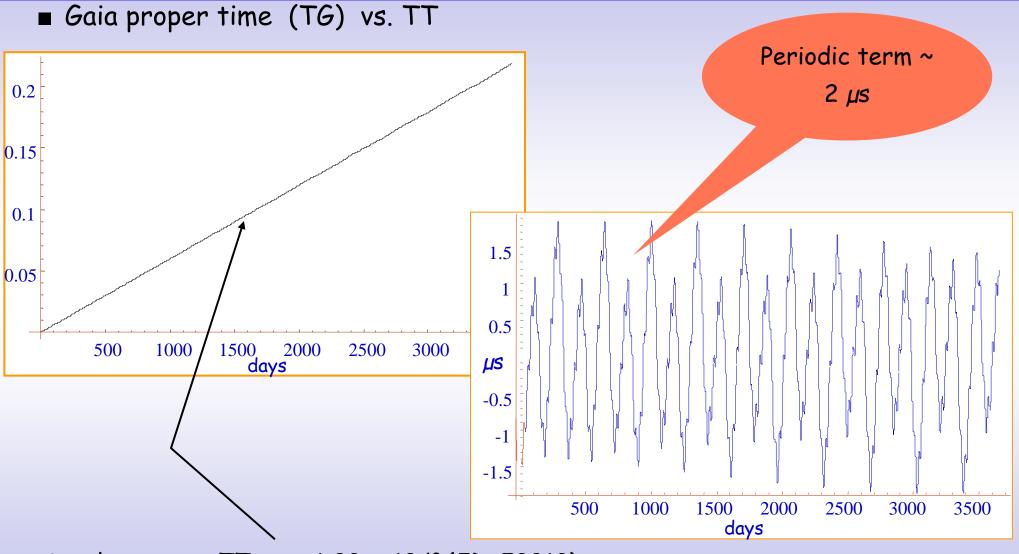
Overall synchronisation scheme



Raw difference TCB – TG

bservatoire

Makes sense over a long term



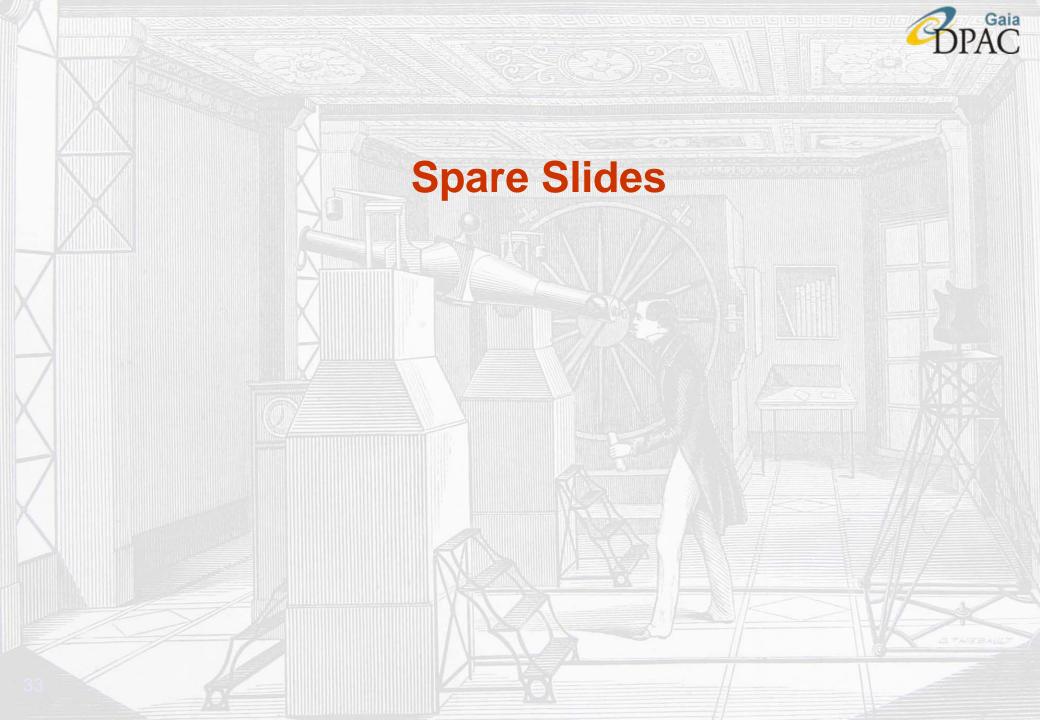
Mignard et al., 2006

SF2A, Besançon, 30 June 2009, F. Mignard

TT - TG

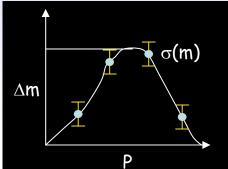
Secular term : TT - τ = 6.93...×10⁻¹⁰ (JD-J2010)

S. Klioner, 2006


SF2A, Besançon, 30 June 2009, F. Mignard

Conclusions

- No good astrometry without dedicated metrology
 - two outstanding examples presented in detail
- Instrument calibration is a major activity of the Data Processing
 - optics
 - detectors throughput
 - CCD large and medium scale mapping
 - spin-rate
 - photometric system
 - RVS reference wavelength
 - zero point radial velocity



Accuracy: Variable phenomena

- Astrometry of standard stars
 - No timing problem (~ 1 minute for the nearest or fastest stars)
- Variable stars : $\sigma(t) < P \sigma(m) / 2\Delta m$
 - No resolution better than few seconds needed
- Radial velocity, spect. binaries : $\sigma(t) < P \sigma(V_r) / 2\Delta V_r$
 - Period of few hours : resolution of ~ 1 mn.
- Astrometry of solar system objects
 - \bullet accuracy of ~ 10 μ as .
 - + largest motion of 200 mas/s : $\sigma(t)$ < 10 100 μ s

- Jupiter needed to 1 km
- Position of Gaia

Earth/Gaia to 0.1 km, V ~ 30 km/s

- Velocity of Gaia
 - Earth to 1 mm/s, $\Gamma \sim 6 \text{ mm/s}^2$
 - + Gaia/L2 to 1 mm/s , Γ ~ 0.04 mm/s^2

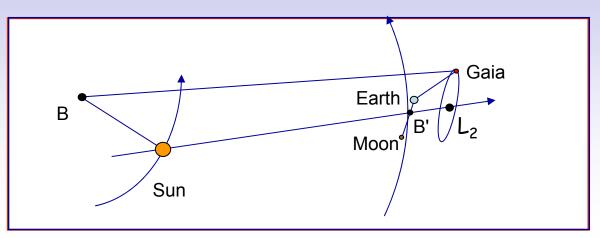
ווו ס(ל) < 0.01 s

→ σ(†) < 0.05 s</p>

→ σ(†) < 0.1 s → σ(†) < 10 s

Attitude of Gaia

- A posteriori computation of the image location
 - $\sigma_{\rm pos}$ < 1 mas $\,$, V ~ 60 $\,$ "/s
 - 1px = 10 µas , V ~ 60 "/s


→ σ(†) < 10 μs</p>

Motion of Gaia : TCB - TG

Orbit of Gaia around L2

) bservatoire

$$\frac{d\tau}{dt} \approx 1 - \frac{1}{c^2} \left[\frac{V^2}{2} + U \right] + \frac{1}{c^4} \left[-\frac{V^4}{8} - \frac{3}{2}V^2U + \frac{U^2}{2} + 4\mathbf{V.W} \right]$$

$$t - \tau = \int \left(\frac{V^2}{2c^2} + \frac{U}{c^2}\right) dt + \int \left(\frac{1}{8}\frac{V^4}{c^4} + \frac{3}{2}\frac{V^2U}{c^4} - \frac{U^2}{2c^4} - 4\mathbf{V}.\mathbf{W}\right) dt$$

• Numerical quadrature + solar system ephemerides

SF2A, Besançon, 30 June 2009, F. Mignard

Solution for a period of few years

 $\tau = TG$ t = TCB

$$\frac{d\tau}{dt} = 1 + \frac{1}{c^2} \,\alpha'(t) + \frac{1}{c^4} \,\beta'(t)$$

 \rightarrow motion of the Gaia clock in BCRS

$$\alpha' = -\frac{1}{2} v_o^2 - \sum_A \frac{GM_A}{r_{oA}}$$

 \rightarrow from the BCRS metric with Gaia **r**, **v**

$$\begin{split} \beta' &= -\frac{1}{8} \, v_o^4 + \left(\beta - \frac{1}{2}\right) \, \left(\sum_A \frac{GM_A}{r_{oA}}\right)^2 + (2\beta - 1) \, \sum_A \left(\frac{GM_A}{r_{oA}} \sum_{B \neq A} \frac{GM_B}{r_{AB}}\right) \\ &+ \sum_A \frac{GM_A}{r_{oA}} \left(2(1+\gamma) v_A^i v_o^i - \left(\gamma + \frac{1}{2}\right) \, v_o^2 - (1+\gamma) v_A^2 + \frac{1}{2} a_A^i r_{oA}^i + \frac{1}{2} (v_A^i r_{oA}^i / r_{oA})^2\right) \end{split}$$

$$\frac{d\delta t}{dt} = \frac{1}{c^2} \, \alpha'(t) + \frac{1}{c^4} \, \beta'(t)$$

 \rightarrow direct transformation

$$\frac{d\delta\tau}{d\tau} = \frac{1}{c^2} \,\alpha'(\tau - \delta\tau) + \frac{1}{c^4} \,\left(\beta(\tau - \delta\tau) - \alpha^2(\tau - \delta\tau)\right)$$

- The initial conditions $\delta t(t_0) = 0$ for some fixed t_0 during the mission
- Solution represented in Chebyshev polynomials

Practical method for TCB $\leftarrow \rightarrow$ TG 2/2

$$\tau = t + \delta t(t),$$

$$t = \tau - \delta \tau(\tau)$$

 $\tau = TG$

t = TCB

On-board time and clock

- It will be used to tune the master clock at 20 MHz
 - 1 clock cycle = 50 ns
 - cycle number coded over 64 bits (~ 10¹⁹ states)
- This will control the TDI clocking (TDI = 982.8 μ s)
 - 1 TDI period = 19656 clock cycles
- Therefore OBT = 19656*TDI index
 - OBT will be embedded in the TDI data stream
- The CDU generates clock signals and synchronisation pulses which inherit from the main clock short term and long term stability properties.
- Any CDU generated signal is synchronous and phased with the others and consequently with the main clock.

Gaia