Stellar physics with GAIA

Bertrand Plez LUPM

With great help from A. Chiavassa, A. Jorissen, P. de Laverny, Y. Lebreton, O. Richard, C. Soubiran, M. and F. Spite

SF2A, June 21, 2011

GAIA

 Scope of GAIA : Galactic formation and evolution, dynamics
⇒stars are markers (kinematics, chemistry, ...)

 Also, of course: reference frame, cosmological distance scale, exoplanets, fundamental physics, solar system, dark matter, ...

Stars as targets per se

- Stars can be studied with GAIA : we will gain insight into various aspects of stellar physics :
 - Distances -> luminosities, radii, etc
 - Masses,
- Preparation of GAIA induces better stellar physics, and new tools

• My talk will illustrate these two points

What will GAIA provide ?

- 10⁹ stars to V<20 (300µas) (completeness)
- 26x10⁶ stars to V<15 (20μas)
 - Sun@1kpc: $\Delta d/d=0.02$ Red Giant@2.5kpc: $\Delta d/d=0.05$
 - M-L dwarf @100pc: $\Delta d/d=0.03$
- 3x10⁶ stars better than 1%
- 30x10⁶ stars better than 10%
- Proper motions 50% better than parallaxes
- Radial velocities at 1-10km/s to V=16
- => Masses for binaries
- Multiple epochs => stellar variability, rare types of stars/stages of stellar evolution : 18x10⁶ variables (Eyer & Cuypers 2000)

What will GAIA bring us for stellar physics ?

- Good distance => accurate L, the most commonly missing parameter in Galactic star studies
- L combined with T_{eff} (from photometry/ spectrophotometry) => R (L=4 π R² σ T_{eff}⁴)
- M and R => gravity g (difficult to derive from spectroscopy, and often affected by NLTE effects)
- In addition, synergy with seismology which provides, e.g., M/R³

Stellar evolution (1)

- Modeling of stellar evolution :
 - Good physics : EOS, nuclear reaction rates, opacities, atomic diffusion, atmospheres, ...
 - Special difficulties for cool, dense stars, late stages, and accurate modeling (e.g. Sun)
- Predictions: L(t), R(t), T_{eff}(t), z(t), ...
- Validation with well known systems (Sun, α Cen binary, ...)

Stellar evolution (2)

- Atmospheres :
 - Boundary condition
 - Transformation L-T_{eff} => M_V , BC_V , T_{eff} color
 - Extraction of stellar parameters from observations : T_{eff}, logg, chemical composition, ...

Great recent progress : opacities, 3D, NLTE, ... But still relatively large systematic errors for cool giants, hot stars, metal-poor stars

Ages from isochrones

Stellar evolution (3)

• Validation

Example of α Cen

M_A=1.105±0.007, R_A=1.224±0.003, logg_A=4.307±0.005 M_R=0.934±0.006, R_R=0.863±0.005, logg_R=4.538±0.008

Stellar evolution (3)

Validation

Example of α Cen

M_A=1.105±0.007, R_A=1.224±0.003, logg_A=4.307±0.005 M_B=0.934±0.006, R_B=0.863±0.005, logg_B=4.538±0.008

Note that $logT_{eff}$ from L and R are : 3.77 and 3.74 \Rightarrow L is wrong? \Rightarrow T_{eff} from spectroscopy not good ?

⇒Find a consistent solution = constraint for atmosphere and evolution models i.e. L, g, T_{eff}, M_V, BC, etc from atmos., and then test evolutionary tracks Remaining difficulty : abundances!

GAIA and stellar parameters

GAIA will bring tight constraints on L, T_{eff} for many stars. But, degeneracy is still a problem : MS and TO. Seismology is very complementary !

Lebreton & Montalbán 2010

Clusters

 HR diagrams of clusters

=> same ages, and initial chemical composition

Hyades (de Bruijne et al. 2001,and Lebreton et al. 2001)

Clusters and He abundance

Abundances : NLTE effects

Requiring ionization equilibrium (LTE) => gravity g

Fuhrmann et al. 1997 (Procyon)

NLTE effects

- In fact Fel/Fell or Cal/Call depend on collisions (e- and H), and photo-ionization.
- Collisions with H not well known. Drawin aproximation with factor S_H between 0 (no collisions) and 1-3 (closer to LTE)

Transport processes ; abundance anomalies

CN processed RGs with high N/C, low ¹²C/¹³C, no Li

Mixing

Na-Al overabundance for field stars, as seen in globular cluster stars. But are these AGBs?

=> Need for **better L**, and logg

Diffusion and turbulent mixing

Element diffusion inside stars, with unknown amount of turbulent mixing

Impact on determination of "real" abundances from surface abundances (Li, ...)

=> Test on clusters

Korn et al. 2007

Diffusion; further validation

Explain Li in EMP stars?

Sbordone et al. 2010

GAIA preparation: Global Stellar Parametrizers

- Powerful algorithms to quickly extract APs from large number of spectra (GSP-spec)
 - Optimization : APs derived from distance minimization
 - Projection : observations projected on a set of vectors defined during learning phase -> MATISSE (Nice)
 - Classification : pattern recognition-> DEGAS (Nice)

GSP-spec : Matisse & Degas

Test on S⁴N (Allende Prieto et al. 2004) and CFLIB spectral libraries (Valdes et al. 2004)

GAIA preparation: large homogeneous samples of stars

WP "provide calibration of training data" CU8 (C. Soubiran)

General Stellar Parametrizers are trained on synthetic spectra

- \Rightarrow systematic errors in AP's
- \Rightarrow Need for external calibration with reference stars.

Determine high quality AP's on homogeneous scale

- A few 10's fondamental calibrators (too bright for GAIA)
- 500 to 5000 primary calibrators, with differentially determined AP's
- 1000's of secondary calibrators for large scale validation

In recent years many large samples analyzed by various authors. Analyses will be homogenized.

Challenge! Huge effort! Also important to validate stellar models!

Large samples of stars

GAIA preparation:

3D models, photo-center and parallax accuracy

Hipparcos => GAIA

- 100 binary system with M at 1% => 17000
- 200 stars with π at 1% => 21x10⁶, and 7x10⁵ at 0.1%
- 120 clusters (d<1kpc) precision better than Hyades now
- Parallaxes for subdwarfs, subgiants, ...
- Distance to stars in 20 globular clusters at <10%
- This unprecedented data set, combined with interferometry (R/d), and asteroseismology (f(M, R, T_{eff})) will allow stringent tests of models (atmospheres and evolution), and quantitative understanding of physical processes (mixing, rotation, ...)