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Introduction 

The distribution of orbital elements, and in particular the orbital period and the eccentricity, can reveal 
much about the formation mechanisms of binary systems as well as their subsequent evolution. In the 
same vein, the distributions of the masses of the two components, M1 and M2, or similarly, of M1 and 
the mass ratio, q=M2/M1, are clues to critical questions related to binaries: did the binaries form 
through random pairing (in which case the mass of the individual components would be drawn from 
the IMF)? Does the mass ratio distribution depend on the primary mass (as does apparently the 
multiplicity of stars)?  How will the systems evolve (some systems being possible only if the mass 
ratio is close to one, i.e. the system is made of quasi-twins)? How do families of stars compare to each 
other? 
It is thus a reasonable thing to do to try to estimate for different samples of binary stars the distribution 
of their mass ratios and many attempts have been done in the literature. I will hereby review some of 
the pitfalls of such endeavours.  

1. Spectroscopic binaries and exoplanets 

We can distinguish between single- and double-lined spectroscopic binary (SB1 and SB2), depending 
on whether we can see the radial velocity variations of one or both components. The distinction will be 
due to the magnitude difference between the components, as too large a difference impedes the 
detection of the secondary star. Although the exact value of this limit will depend on the observational 
setting (e.g. wavelength range, exposure times, telescope size, method used), for main-sequence 
primaries a system will generally appear as a single-lined system if q < 0.65. For giants, the limit 
moves very close to 1. By observing in the near-IR, Mazeh et al. [1] have, however, shown how they 
could transform a sample of SB1 into SB2, thereby obtaining directly the distribution of q. The main 
difference between SB1 and SB2 as far as we are concerned indeed, is that for the first ones, we do not 
have a direct handle on the mass ratio in the system, contrarily to the second case. 

For SB1, astronomers have to use the binary mass function, which is derived from the observed orbital 
period P, eccentricity e and radial-velocity amplitude K, through the relation 

f (m) = K 3P(1− e2 )3/2 / 2πG , where G is the gravitational constant. 

Unfortunately for us, this quantity has a rather complicated dependence on the mass ratio, and, even 
worse, also depends on the unknown inclination of the system on our line of sight, i:  

� 

f (m) = (M2 sini)
3

(M1 + M2)
2 = M1

q3

(1+ q)2
sin3 i  

Exoplanets discovered by the radial velocity method are nothing else than SB1 in which

� 

M2 << M1, 
with M1 generally known from stellar models, so that the knowledge of f(m) directly translates into 
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the knowledge of 

� 

M2 sini . This explains why the radial velocity method provides a lower limit on the 
mass of the planet, M2. 

The above dependence of f(m) on q and i is the key to the problem at hand. It also shows what is the 
difficulty in deriving the mass-ratio distribution (MRD) from the observables. If we are limiting 
ourselves to a well-defined and well-behaved sample of SB, we can assume that for each system, we 
know the primary mass M1. Thus, one knows the distribution of Y= f(m)/ M1, Φ(Y ) , which is now 
only a function of q and i. We can also make the reasonable assumption that the inclination i is 
randomly distributed (there is no reason to have a connection between the apparent inclination of the 
system on our line of sight and the physical properties of the system). The problem thus consists in 
using the distribution of Y to obtain the sought distribution of q. Several methods exist to this aim. 

2. Obtaining the MRD 

2.1 The wrong way 

As beautifully expressed by Mencken [2] “there is always an easy solution to every human problem: 
neat, plausible, and wrong,” and there is no reason to believe that astronomy is any different from 
daily life. To solve the above-mentioned problem, many authors have used – and some are 
unfortunately still using [3]! – a simplistic method that has been shown on several occasions [4–8] to 
provide incorrect results. This simple method assumes that one can replace in the definition of Y, sin i 
with a mean value, corresponding to either 0.589 or 0.679 (assuming that f(i) ~ sin i or sin2 i, 
respectively). This, however, will provide wrong results: an initially uniform distribution will for 
example result in a decreasing f(q), while an increasing f(q) produces a Gaussian-shaped one. The 
reasons for this behaviour are well known and have been described in the above-mentioned papers. 
Here, I would like again to stress against using this simplistic and incorrect approach. It is also 
worthwhile to note that the same reasons why this method does not work explain why we cannot infer 
the mass of an exoplanet from its 

� 

M2 sini  value, as was recently rediscovered [9]. 

2.2 Functional fitting 

The most obvious way to derive the MRD is of course to assume it in the first hand. One can indeed 
postulate that the MRD takes a given – most likely rather simple – functional form, that depends on a 
few parameters, and one can then use a minimisation technique to derive the most appropriate values 
of these parameters in order to reproduce the observed Φ(Y )  [4,10; see also 11 for an application on 
exoplanets]. Although this method is rather limited as one need to make some (educated) guess for 
f(q), it has the advantage that one will not – in principle – be tempted to over-interpret the data. There 
is an obvious caveat, however. When making the minimisation, one should not compare to the 
distribution of f(m) as, given the large dynamical range of values over which the latter spreads most of 
the points will be concentrated in one single bin and the comparison will be meaningless, leading to 
wrong conclusions. A better choice is done when comparing with the distribution of log f(m) for 
example (or any other binning that spreads the data in similarly populated bins). See [12] for an 
analysis of the kind of mistakes this can lead to.  

2.3 Inversion methods 

Of course, the best would be to be able to directly inverse the observed distribution of f(m) to derive 

the MRD. If we define Q=q3/(1+ q)2, we have Y=Q sin i, and thus Φ(Y ) = f (q)Π(Y | q)dq,∫  where 

Π(Y | q)  represents the conditional probability to observe Y when the mass ratio q is known [6]. We 
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can easily show that Π(Y | q) = (3Q1/3Y 1/3 Q2/3 −Y 2/3 )−1Θ(Q −Y ),  where Θ(x)  is the Heaviside 
step function. The above integral can be inversed using the Richardson-Lucy iterative scheme, or any 
other equivalent method, as was done by several authors [e.g. 5–8, 13]. 

Here again, I would like to stress three caveats. The first one is that the above formulation is only valid 
when f(i) ~ sin i, and that all values of i are possible, a priori. However, depending on the precision 
of the observations – and the orbital periods sampled – it may not always be possible to detect all the 
binaries with the smallest inclinations. It is thus necessary to check how reliable this assumption is by 
e.g. performing Monte Carlo realisations or applying the technique on an associated sample of SB2 (as 
was done e.g. by [12]), and providing a posteriori confirmation of the obtained MRD by using the 
corresponding functional fit and comparing the obtained distribution of log f(m) with the observed 
one. The second caveat is that – depending on the size of the sample under scrutiny – one should be 
very careful at the level of details one could trust. Figure 1 shows nine Monte Carlo realisations of the 
inversion method on two different MRD (a uniform one and another one which consists of 3 separated 
peaks) for samples of different sizes: N=100 and 1000. It is obvious that for the smaller samples, one 
can almost obtain any kind of distributions. This should clearly serve as a warning at what should be 
trusted. For a sample of N=1000, although there are some minor fluctuations, we are clearly able to 
recover the main features of the initial distributions. Unfortunately, there are not many significant 
samples of 1000 SB available yet for study. Brown [14] has recently made similar remarks in the 
context of exoplanets. The third caveat – and the most tricky – is that in order to reproduce the real 
MRD, which is the one we are looking after, it is important to make sure that the sample we are 
considering is free from any observational biases, or at least that we think we understand these and can 
correct for them. This is far from an easy enterprise and, although it was done successfully in the past 
[e.g. 13, 15, 16], it generally leads to samples of rather small sizes. 

  

 
 

Fig. 1: Sets of nine random realisations of inversion of a uniform MRD (left) and of a 3-peaked one 
(right) are shown for samples of two different sizes: N=100 (a) and N=1000 (b).  

The GAIA link 

The GAIA survey will provide us, after 5 years of observations, with a large new sample of 
spectroscopic binaries – perhaps a few millions orbits will be obtained – allowing us to perform a 
detailed statistical analysis and creating many subsamples to study different effects. The survey will be 
homogeneous and well-defined, which will make it more easy to correct for the observational biases. 
However, GAIA will suffer from very poor precision in the radial velocity. Moreover, this precision 
will worsen very quickly as a function of the magnitude of the star as well as its spectral type (the 
error on one measurement being of a few km/s for bright G-K stars to several 10-20 km/s for faint A-F 
stars).  This means that many systems with rather large semi-amplitudes will be missed. I illustrate this 
in Figure 2, where I show what would be the derived MRD (in black) assuming (just for illustration 
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purposes) that the real MRD is uniform: many systems with small q would be missed and one would 
need to correct for this. The kind of binaries as a function of eccentricity, period or inclination that 
would be missed is shown in the right panel. These are the effects that will need to be corrected for.  

Fig. 2: Effect of the poor precision of GAIA on the derived MRD (left) as well as the systems missed 
because of their eccentricity, period, or inclination, respectively (right). 
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