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Dynamical analysis of the ν Octantis planetary system
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Introduction

The ν Oct is a single–line spectroscopic binary composed of ν Oct A, K1 III giant primary (1.4 ±
0.3 M!), and unseen red dwarf secondary ν Oct B, K7-M1 V (0.5± 0.1 M!) separated by ∼ 2.55±
0.13 au. Already in 1935, Colacevich [5] collected 11 radial velocities (RVs) of the primary, and Alden
[2] determined Keplerian elements of the astrometric orbit. Remarkably, the inclination ibin = 71◦ is
recently known with an error of less than 1◦ on the basis of Hipparcos astrometry and 223 precision RVs
collected by Ramm et al. [13]. Yet these authors discovered residual variability of the RVs that has been
attributed to a Jovian planet of mass mp sin ip = 2.5 MJup.
The announced planet is quite unusual, because the derived semi-major axis ap ∼ 1.2± 0.1 au implies
it orbits in the middle between the massive primary and secondary. Besides the formation of this planet
in the binary can be hardly explained, any analytic or general stability criteria in the three-body prob-
lem or in the restricted three-body problem, including criteria by the Hill, Holman & Wiegert [10], the
resonance-overlap criterion by Wisdom [14] and other (see [12]), are violated. Indeed, Eberle & Cunz
[6] found the proposed Keplerian solution strongly unstable in just 1–10 binary periods time-scale. That
contradicts the planetary hypothesis, although the discovery paper excludes non-planetary sources of the
observed signal, like stellar spots or pulsations.
There could be alternate explanations of the observed RVs variability. An interesting and original model
has been proposed at this conference, which regards the orbital configuration of a hierarchical triple
system with an unseen binary at the place of the secondary ν Oct B. That would force a precession of
the primary orbit around the barycentre of that inner binary and it could mimic a signal attributed to the
identified putative planet [11]. Other causes of the residual RVs can be an unmodeled stellar variability, a
different number of planetary companions, systematic errors of the observations, including instrumental
instabilities and non-Gaussian uncertainties, e.g., the red noise [3], or a quite different orbital model (see
below).
Indeed, [6] found that a retrograde orbit of the planet lies in a stable zone much wider than in the direct
configuration. However, the analysis of the RVs done in both cited papers does not seem consistent with
the dynamical character of the system. The mass of the secondary might be almost half of the primary
mass, hence the relatively wide planetary is strongly perturbed. In the ν Oct, the perturbation parame-
ter (mass ratio of the secondary and the primary) might be as large as 0.3–0.5. Furthermore, it has been
assumed that the whole system is co-planar, no matter the planetary orbit is prograde or retrograde. How-
ever, non-planar orbits in compact binaries may likely appear due to violent post–formation scenarios,
like planet–planet scattering [1] that may lead to highly inclined configurations. Finally, the dynamical
simulations done in [6] concern very particular initially aligned orbits, that maximises the chance of
stable configurations but does not necessarily reproduce the reflex motion of the primary. Because the
phase space of strongly interacting system is non-continuous in terms of stability, the relative orbital
phases should not be fixed a priori, if supposed to be consistent with observations.
In this paper, we try to verify and improve the kinematic (Keplerian) model of the ν Oct planetary system
by searching for the best-fit configurations in terms of self-consistent dynamical, N-body model, along
e.g. [8] and references therein. To resolve the fine structure of the phase space of strongly perturbed dy-
namical system, we apply the fast-indicator MEGNO [4] code adapted to our new multi-CPU computing
environment MECHANIC (see our second paper in this volume). More details and technical aspects of
our work will be described and published elsewhere [15].
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Figure 1: The left-hand panel: statistics of Keplerian best-fit models projected onto the semi-major
axis — eccentricity (ap,ep)-plane gathered in the hybrid search. Best-fit configurations with an RMS<
23ms−1 are marked with filled red circles. The right-hand panel: synthetic curve of the best fit model
over-plotted with the planetary residual signal, after subtracting the RVs due to the secondary. The
Keplerian elements are labeled on the plot.

1. Keplerian model and the system stability

To verify the results in [13], we performed a hybrid search for the Keplerian orbits of the putative planet,
which relies on the Genetic Algorithms and a fast local optimization scheme [8]. We used only the RV
measurements in [13]. Their formal errors have been rescaled by a stellar jitter of ∼ 5 ms−1 in quadrature.
The results are shown in Fig. 1. The left-hand panel illustrates the best-fit parameters projected onto
the semi–major axis–eccentricity plane. Configurations providing smallest RMS< 22 ms−1 are marked
with red filled dots, and gradually “worse” solutions with larger, shaded circles that are labelled. We
can confirm that the best-fit, moderate-eccentricity Keplerian orbit is found close to ∼ 1.2 au, and it
corresponds to a strongly unstable configuration. We found two other, although worse solutions families
around ∼ 1.6 au and 2 au, respectively. These fits cannot be skipped a priori because the RV signal of
putative planet (the right-hand panel in Fig. 1) is very noisy, and the residuals have an amplitude similar
to the signal itself, in the light of reported formal measurements errors at the level of 5 ms−1. That may
put the discovery in doubt, nevertheless we decided to test the planetary hypothesis on the dynamical
grounds.
For that we performed extensive numerical mappings of the phase space, following the hypothesis of [6].
They searched for stable orbits at discrete grid of primary mass (1.1,1.4 and 1.7) M#, three mass ratios
(µ = 0.2593,0.2754,0.2908), and 30–step initial distance ratio ρ between the planet and the secondary,
ρ ∈ 〈0.22,0.54〉 ≡ 〈0.56,1.38〉 au. The N-body equations of motion have been integrated over 103 years
(∼ 350 binary periods Pbin) for prograde orbits, and over 104 years (∼ 3500 Pbin) for retrograde orbits.
The initial orbits have been aligned, and both secondaries fixed in their apoastrons with respect to the
primary. These integrations confirm the theoretical stability limit ρ ∼ 0.25 ≡ 0.64 au for prograde orbits.
For the retrograde case, the stability limit has been found much larger, indeed, ρ ∼ 0.479 ( 1.22 au),
claimed in agreement with the formal error [13]. However, in configuration stable over 10 Myr [6],
ap ∼ ρ0×abin/(1+ep)) 0.86 au, where ρ0 = 0.379, abin ∼ 2.55 au), and ep = 0.123, hence the osculating
semi-major axis ap has been fixed relatively different from the formal solution.
We fixed all angles and planetary elements as in [6], the mass of the primary to 1.4 M#, µ = 0.28 (i.e., as
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Figure 2: Dynamical maps for the initial condition examined by Eberle & Cuntz [6] in the planetary
semi-major axis – relative inclination (ap, irel)-plane. Masses and parameters of the binary are fixed at
their values in [6]. Initial orbits are aligned, with the secondary and the planet fixed at apoastrons. Sta-
bility is colour-coded: yellow means strongly unstable motions, and dark magenta is for quasi-periodic
solutions (MEGNO Y ∼ 2).
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in their Fig. 2), and then we computed high-resolution (1440× 900 pixels) MEGNO maps over 25,000
periods of the binary. The results are shown in Fig. 2 at the semi–major ap — relative inclination irel
plane. The top left-hand panel illustrates the phase space globally, and three subsequent maps are for
close-ups of a region, in which the planet might be present. That experiment confirms the stability limit
almost two times farther for retrograde than prograde orbits. The phase space is filled with unstable
MMRs. Overlapping of these resonances and their sub-resonances creates global chaotic zone beyond
∼ 0.6 au for prograde orbits, and ∼ 1.0 au for retrograde orbits, that is supposed the main source of
instability in binaries [12]. Configurations with intermediate relative inclinations are very chaotic, par-
ticularly close to polar orbits ( irel ∼ 90◦), and most likely are associated with the Kozai resonance. A
stable retrograde orbit found in [6] lies in a region spanned by strong 4:1, 3:1, 5:2 and 2:1 MMRs. More-
over, close-ups of this area reveal a complex net of stable and unstable motions that might be identified
with the so called Arnold web found in perturbed, low-dimensional Hamiltonian systems, and in the
Outer Solar system [7, 4, 9]. Yet it is now clear that finding stable orbit at a sparse, equidistant grid could
be done basically only by chance.

2. Self-consistent Newtonian model with stability constraints

To improve the Keplerian model, we conducted a search for stable models in terms of the N-body prob-
lem imposing a stability constraint (GAMP algorithm, [8]). We fixed a binary inclination ibin = 71◦ and
its nodal line Ωbin = 87◦ [13]. Masses of secondaries, planet inclination ip, its nodal longitude Ωp and
remaining elements were fitted. The results are shown in Fig. 3. Quality of the fits is expressed by an
RMS, and labeled in panels. Filled, red circles mark regular fits, that have MEGNO signature ∼ 2 over
2000 Pbin, providing at least 10-100 times longer stability time.
An inspection of the gathered statistics reveals that the planetary orbit is not well constrained by the
N-body model (blue filled circles). Stable solutions (red filled circles, with RMS< 25ms−1) are found
only for retrograde orbits, in agreement with the Eberle & Cuntz hypothesis, nevertheless initially almost
exactly anti–aligned with the binary orbit, contrary to their aligned orbital setup. Besides, we found the
best–fit configurations with RMS∼ 20 ms−1 for ap ∼ 1.6 au, that would correspond to one of minima
identified in Fig. 1. Yet these fits are very unstable.
The left-hand panel of Fig. 4 illustrates the MEGNO dynamical map in the (ap, ip)–plane for the global
view of the phase space (the left-hand panel), which is mostly strongly chaotic. A close-up (the right-
hand panel) reveals relatively very small regular island of the best-fit stable model found in the GAMP
search (see its elements in caption to Fig. 4). In that island, the phase space has again a very complex
structure of the Arnold web.

Conclusion

We confirmed a hypothesis of stable retrograde orbit in [6]. However, the observational constrains require
such orbits initially anti-aligned with the binary orbit. Besides, stable models may be found only in a
small island with complex Arnold web structure. Although the best-fit is rigorously stable, it remains
uncertain how the planet could be trapped in such a small stable region, or how it could be formed in
globally unstable dynamical environment. Besides, the RV signal is very noisy, and the best-fit models
reveal a large scatter of residuals having amplitude comparable with the RV signal itself. A presence of
Jovian planet in orbit around ν Oct A is questionable, and new observations are required to confirm or
withdraw that explanation of the observed RV residual signal.
Acknowledgments. We would like to thank Helena Morais for a discussion and references. This paper
is supported by the Polish Ministry of Science and Higher Education, grant N/N203/402739 and the
POWIEW project of the European Regional Development Fund in Innovative Economy Programme
POIG.02.03.00-00-018/08.
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Figure 3: Statistics of the N-body and GAMP best-fit models projected onto planes of orbital osculating
elements at the epoch of the first observation in [13], gathered in the hybrid search. A RMS quality of
these solutions is marked with filled circles and labeled in the plots. Configurations found with imposed
stability constraints, and detected as stable by the GAMP algorithm, are marked with filled red circles.

Figure 4: MEGNO maps of stable best–fits found in the GAMP search (note the absolute inclination).
Nominal elements are marked with the star. Osculating, astrocentric elements of the planet at the first
epoch in [13] are mp = 1.92596 MJup, ap = 1.16365, ep = 0.13139, ip = 110.21102◦, Ωp = 262.29811◦,
ωp = 127.26299◦, mean anomaly Mp = 133.16327◦, respectively. Elements of the secondary are ms =
560.62366 MJup, abin = 2.52813, ebin = 0.23881, ibin = 71.28090◦, Ωbin = 87.0◦, ωbin = 74.59137◦,
Ms = 339.762973◦, respectively. We quoted many digits, to reproduce the fit possibly exactly, due to
complex and chaotic neighborhood. Its formal error may be estimated graphically in Fig. 3. Mass of the
primary is fixed at 1.4 M". The RMS of this solution is ∼ 25 ms−1.
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