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Introduction

The radial velocity method for detecting extra-solar planets relies on measuring the star’s wobble around
the system’s center of mass. Since this is an indirect method, we may ask if there are other dynamical
effects that can mimic such wobble. In recent articles[1, 2, 3], we modeled the effect of a nearby binary
system on a star’s radial velocity. We showed that, if we are unaware of this nearby binary, for instance
because one component is unresolved or both components are faint stars, the binary’s effect may mimic
a planet. Here, we review this work, explaining in which circumstances the binary’s effect may mimic a
planet and we discuss what can be done in practice in order to distinguish between these two scenarios
(planet or nearby binary).

1. Overview of theory and results

We study a triple system composed by a star with mass m2, at distance!r2 from the centre of mass of a
binary with masses m0 +m1, and inter-binary distance!r1. We assume that ρ = |!r1|/|!r2|! 1 (hierarchical
system). The Hamiltonian in Jacobi coordinates is [3]

H = −Gm0m1

2a1
− G(m0 +m1)m2

2a2
+F , (1)

where an approximation of the perturbation term is

F = −Gm2

r2

m0m1

m0 +m1

ρ2

2
(
3 cos2 S−1

)
, (2)

with S the angle between!r1 and!r2.
From Eq. (1) we see that the motion is, approximately, a composition of two Keplerian orbits described
by:!r1, with semi-major axis a1, eccentricity e1, and period T1 = 2π/n1; and!r2, with semi-major axis a1,
eccentricity e1, and period T1 = 2π/n1.
The radial velocity of the star m2 is VR = VRK +VRP, where VRK is a Keplerian term that describes the
motion around a "star", of mass m0 +m1, located at the binary system’s centre of mass, and VRP is a small
perturbation[1, 2].
The radial velocity data of the star m2 is first fitted with a Keplerian radial velocity curve, VRK . After
subtracting VRK , we are left with the perturbation term, VRP, from which we could in principle infer the
presence of the nearby binary. However, as we will show next, this is not always possible in practice.

1.1 Coplanar circular orbits

In the case of coplanar circular orbits we have[1]

VRP = K0 cos(n2 t +θ0)+K1 cos((2n1 −3n2) t +θ1)+K2 cos((2n1 −n2) t +θ2) . (3)

The term with frequency n2 is incorporated in the main Keplerian curve, VRK . Since n1 # n2, the 2nd and
3rd terms have very close frequencies that can only be resolved if the observation timespan tobs ≥ T2/2.
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Figure 1: Periodogram of residuals leftover after removing VRK .
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Figure 2: Periodogram of residuals leftover after removing VRK .

If there is enough resolution and precision, we identify both signals and we conclude that they should not
be caused by planets (as such close orbits would be unstable). However, since |K1| = 5 |K2|, in practice,
due to limited precision, we may only be able to observe the signal with frequency 2n1 − 3n2. In this
case, we may think there is a planet companion to the observed star.
We simulated a coplanar triple system composed of m2 = M" on a circular orbit of period T2 = 22 y,
around a binary m0 = 0.7M" and m1 = 0.35M" with a circular orbit of period T1 = 411 d. We computed
radial velocity data points over tobs = 11 y at precision 0.8 m/s. In Fig. 1 we see a signal with frequency
2n1 −3n2 (amplitude 0.9 m/s at 223 d) that mimics a planet of 18ME .

1.2 Non-coplanar circular orbits

In the case of non-coplanar circular orbits, VRP is a combination of 6 periodic terms[2] with frequencies:
n1, 3n1, 2n1 ± n2 and 2n1 ± 3n2. Depending on the observation’s precision and resolution we may
observe one or more of these terms. If all these have well separated frequencies we mistake them by
planet(s).
We simulated a triple system composed of m2 = M" on a circular orbit of period T2 = 4.2 y, around a
binary m0 = m1 = 0.25M" with a circular orbit of period T1 = 85 d. The relative inclination is i = 30◦.
We computed radial velocity data points over tobs = 11 y at precision 0.7 m/s. In Fig. 2 we see signals
with frequency 2n1 − 3n2 (amplitude 0.8 m/s at 46 d), and frequency 3n2 (amplitude 1.4 m/s at 516 d)
that mimic planets of 7ME and 20ME .
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Figure 3: Periodogram of residuals leftover after removing VRK .

1.3 Eccentric coplanar orbits

It can be shown that, generally, VRP is a composition of short period terms[2]. When the orbits are circular
we saw above that there are finite number of periodic terms. When the orbits are eccentric we must
express VRP as an expansion in e1 and e2, hence there is an infinite number of periodic terms. However,
in practice only a finite number of periodic terms (the ones that appear at lowest order in e1 and e2) are
important. In the eccentric 2D case, up to 1st order in the eccentricities, there are 12 frequencies[2]: n2,
2n1−n2, 2n1−3n2, n1−n2, n1−3n2, 3n1−n2, 3n1−3n2, n1 +n2, 2n2, 2n1, 2n1−4n2 and 2n1−2n2.
We simulated a coplanar triple system composed of a star m2 = M" with e2 = 0.1 and period T2 = 22 y,
in orbit around a binary with m0 = 0.7M" and m1 = 0.35M", e1 = 0.2 and period T1 = 411 d. We
computed radial velocity data points over tobs = 11 y at precision 0.8 m/s. In Fig. 3 we see signals with
frequencies 2n1 − 3n2 (amplitude 0.8 m/s at 223 d) and n1 − 3n2 (amplitude 1.4 m/s at 487 d). Since
n2 # n1 these mimic planets of 15ME and 34ME at the 2/1 mean motion resonance.

1.4 Secular evolution

If the star m2 has an eccentric orbit (e2 $= 0) and if tobs > T2, signals at or nearby harmonics of n2
appear[2, 3]. These may be mistaken by planet(s) near a mean motion resonance with a companion
"star" of mass m0 + m1[3]. However, as tobs increases, the short period terms should become negligible
with respect to the orbits’ secular evolution.
The secular evolution can be obtained by averaging Eq. (1) with respect to the orbital periods T1 and
T2. Moreover, since a1 # a2 (hierarchical system) and m2 > m0 + m1 (perturbing binary less massive
than observed star), it can be shown that the star’s motion around the binary’s center of mass coincides,
approximately, with the invariant plane[3]. The secular Hamiltonian, obtaining after averaging equation
(2) over the mean motion of both orbits, is approximately1

Fsec =
G
16

m0m1

m0 +m1

m2

(1− e2
2)3/2

a2
1

a3
2

[
(2+3e2

1)(3 cos2 i−1)+15e2
1 sin2 i cos(2ω1)

]
(4)

with e1 (binary’s eccentricity), ω1 (binary’s argument of pericentre), i (relative inclination).
From Hamilton’s equations we obtain the secular evolution of the star’s orbit. Since Eq. (4) does not
depend on ω2 (star’s argument of pericentre) then ė2 = 0 and

ω̇2 =
3
4

A
m0 m1

(m0 +m1)2

(
a1

a2

)2 n2

(1− e2
2)2 , (5)

1In [3] we present a longer but more correct derivation of the triple system’s secular evolution.
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Figure 4: The normalized precession rate (A).

where
A =

(
1
2

+
3
4

e2
1

)
(3 cos2 i−1)+

15
4

e2
1(1− cos2 i)cos(2ω1) (6)

depends on the binary’s (m0 +m1) orbit.
In Fig. 4 we show A calculated at fixed e1[3]. If i < 40◦ we can eliminate ω1 from Eq. (6) since ω1
circulates. If i > 40◦ we place the binary at the Kozai equilibrium (e1 =

√
1− (5/3) cos2 i, ω1 = ±90◦).

Therefore, VR is better fitted by the radial velocity curve of a precessing ellipse[3]

VR =
n2 a2

(1− e2
2)1/2

mb sin I2

m2 +mb
(cos( f2 +ω2,0 + ω̇2t)+ e2 cos(ω2,0 + ω̇2t)) (7)

where mb = m0 +m1, and ω̇2 is given by Eq. (5).
We simulated a system composed of a star m2 = M# with an eccentric orbit (e2 = 0.2) of period T2 =
4.24 y, and a binary with masses m0 = 0.35M# and m1 = 0.15M#, period T1 = 85 d, relative inclination
i = 60◦ and eccentricity e1 = 0.76 (at the Kozai equilibrium). We computed radial velocity data points
over tobs = 6 y at precision 5 m/s. In Fig. 5 (top) we see the residuals leftover after fitting a fixed Keplerian
radial velocity curve. There is an an obvious peak at 606 day which is a frequency close to an harmonic
of n2. In Fig. 5 (low) we see the residuals leftover after fitting a radial velocity curve with precession
(Eqs. 7,5). We obtain ω̇2 = −0.25◦/y and the peak at 606 d is no longer important.

Conclusion

When tobs < T2, we observe short-period terms due to the binary that may be mistaken by planet(s). In
order to distinguish the binary’s effect from planet(s) we need precise observations over a reasonable long
timespan, which is often not possible in practice. However, a signal with frequency, npl , and amplitude,
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Figure 5: Periodogram of residuals leftover after fitting Keplerian radial velocity curve (top) or radial
velocity curve of precessing ellipse (low) to the data.
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Kpl , mimics a planet with parameters[1, 2]

apl =
(Gm2)1/3

n2/3
pl

, (8)

mpl sin Ipl = Kpl
m0 +m1 +m2

npl apl
. (9)

Therefore, when the detected signals’ frequencies are well separated we can invert these expressions to
predict binary system’s parameters and check if they are realistic[1, 2].
When tobs ! T2 the orbits’ secular evolution dominates over the short-period terms. In this case, we
showed that the star’s orbit precesses due to the binary, and measuring this precession rate provides
estimates for the binary’s parameters[3].
We detected such a precessional effect in the radial velocity data of the star ν-Octantis A[3]. This could
provide an alternative explanation for the signal at 417 d that had previously been identified as a planet[4].
Since ν-Octantis A has a nearby companion (ν-Octantis B) on a 2.8 y orbit[4], a planet at 417 d cannot
be stable on a coplanar prograde orbit (although it can survive on a coplanar retrograde orbit)[5]. We
measured retrograde precession of −0.86◦/y which could be explained if ν-0ctantis B was a double star
inclined i > 45◦ with respect to the main binary’s orbit[3]. Moreover, we observed that after fitting a
precessing orbit to the radial velocity data, the signal at 417 d was no longer prominent in the leftover
residuals[3]. Although, retrograde precession of the main binary could also be explained by a planet on
a highly inclined orbit[3], these orbits do not seem to be stable[3].
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