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Introduction

Whereas deriving the orbit of a binary star was perceived as a tedious task even during the second half
of the 20th century, nowadays, computers can investigate millions of solutions and keep the best one in
just a few seconds. However, even if one is very careful in defining what best means (e.g. least-squares
sense), the nonlinearity of the model can be very misleading, thus possibly yielding some solutions which
are numerically valid but physically rather unlikely. With this paper, we aim at warning the fitters about
the potential inadequacy of the methods they use to assess their solutions. Indeed, the problem is neither
in the model nor in the fitting method but rather in the often overlooked assumptions of some statistical
tools.

1. Model assessment

1.1 Linear fit

Under the assumption of Gaussian observational errors, the least-squares paradigm (L2-norm), combined
with a good minimisation scheme (QR, Levenberg-Marquardt), is often adopted to fit these observations
with some model. The value of the objective function (usually abusively called χ2) together with the
number of data points (N) and the number of parameters (p) in the model allow the end-user to assess
how good the fit is thanks to some auxilliary tables of statistical quantities.
Alternatively, the value of the objective function can be combined with the numbers of observations
and of parameters to yield a number from which it is easier to apprehend the quality of the fit directly.
An example of such combination is the goodness of fit, F2, used to assess the quality of the fits in the
Hipparcos catalogue [5]. It is defined as
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where ν is the number of degrees of freedom (i.e. N − p) and χ2 is the weighted sum of the squares of
the differences between the predicted and the observed positions [10]. F2 (Wilson & Hilferty’s cube root
transformation) follows approximately a N(0,1) distribution [15]. The behaviour of the Hipparcos single
stars (i.e. a linear model with 5 parameters) is very close to the theoretical prediction. Their goodness of
fit follows a N(0.22,1.08) distribution.
In front of two alternative models with respectively p and p′ parameters (p′ > p), one often relies upon
an F-test [2] to decide whether the reduction of the objective function achieved with the additional
parameter(s) is significant or not.
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α = Pr
[
F̂ < F(p′ − p,N − p′)|no signal

]
(3)

where α is related to the rate of false detection. If the first linear model is already good and the second
model is linear as well, comparing their respective F2 does not help as they would essentially be the
same, thus concluding that both models are good. Instead, in such a case, the F-test will notice that the
reduction of the χ2 is consistent with the number of additional parameters and the new model discarded.
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Figure 1: Fraction of single stars for which the orbital model is accepted. When the acceleration model
is tested on the same sample, one obtains the diagonal ((0,0)–(1,1)). The lower line corresponds to a

sample of synthetic single stars whereas the red one is based on the Hipparcos single star observations.

Once again, when an acceleration model (i.e. seven parameters) is applied to the Hipparcos single stars
(i.e. those for which the five parameter model was already acceptable), the percentage of false detection
perfectly follows the threshold set on α . So, nothing to worry about, if one tries a model too sophisticate,
the F-test concludes that it does not improve over the simpler model.

1.2 Nonlinear models

Can the whole previous section be applied to any nonlinear model? What if one applies the orbital
model (a seven parameter model, nonlinear, on top of the five parameter, linear, single star one)? The
behaviour of the F-test comparing the full orbital model with the single star one is depicted in Fig. 1. For
a substantial fraction of the thought-to-be single stars, the reduction of the objective function achieved
with the orbital model is considered significant. Even if one cannot reject that it is true for some of them,
their number is rather suspicious: at a 1% false detection level, more than 21,400 objects out of 100,000
single stars would turn out to be binaries. A similar experiment on synthetic single stars yields 17,400
binaries.
Why are there so many accepted binaries? Let v denotes the observations, a the p parameters, t the N
observation times, V the weighting matrix and f the model:

Ξ2 = (v− f (a, t))tV−1(v− f (a, t)) ∼ χ2
N−p (4)

is true if and only if f is linear. In the case of the orbital model, N − 12 therefore overestimates the
number of degrees of freedom.

2. Non-parametric tests

Unlike the F-test, the Kolmogorov-Smirnov (KS) test does not rely upon any assumption about the very
nature of the model (non parametric test). It is used, for instance, to assess the confidence level at which
one can reject the hypothesis that two empirical distributions are drawn from the same parent population.
If one denotes by S1 and S2 the cumulative distributions of the two populations, the Kolmogorov-Smirnov
statistic is:

DKS = max
−∞<x<∞

|S1(x)−S2(x)| (5)
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In the present case, the two distributions can be the residuals based on the single star solution and those
derived with the orbital model.
The sets of signed weighted residuals (based on a least squares fit) are considered indistinguishable too
often (thick line in Fig. 2). This is a pitfall of the KS test. Its sensitivity is not uniform over x. KS test is
actually more suited to discriminate upon the medians of the distributions [9, 14, 1]. The median of the
set of residuals is essentially zero in both cases and that is why KS does not distinguish the two. As an
alternative, one can take the absolute value of those residuals but it affects the median so much that the
test becomes over sensitive (line of medium thickness in Fig. 2).
Kuiper [11] proposed a statistic which overcomes the Kolmogorov-Smirnov maximum sensitivity at the
median. The expression in Eq. 5 is replaced with

DKu = max
−∞<x<∞

(S1(x)−S2(x))+ max
−∞<x<∞

(S2(x)−S1(x)) (6)

The corresponding probabilities are plotted in Fig. 2 as a thin line just below the diagonal. Though this
new test slightly underestimates the number of systems worth keeping (721 at 1% on synthetic data),
its overall behavior is also the closest to the expectations (the cumulative frequency distribution of the
probabilities is essentially parallel to the diagonal).

Figure 2: Cumulative frequency distribution of the Kolmogorov-Smirnov probabilities that the signed
(resp. unsigned) residuals of the orbital and single star model are distinct drawn as a thick (resp.
medium) line. The distribution of the Kuiper probabilities is plotted as a thin line just below the

diagonal.

3. Back to F-test

The only reason for the hypothesis about the linearity of the model in the definition of χ2 is to make it
straightforward to obtain the number of degrees of freedom. Very few references actually deal with the
nonlinear case and, among them, the usual approach consists in correcting, say, the F-statistic to account
for the nonlinearity by deriving the curvature of the model near the solution [3, 7, 4]. A truncated Taylor
expansion of the model is also an alternative [6].
What we are still missing is a way to estimate the number of degrees of freedom in case of a nonlinear
model or the smallest linear model (in terms of number of parameters) that yields the same level of Ξ2

as the nonlinear model. Among linear expansions, Fourier sounds the most appropriate owing to the
periodic nature of the nonlinear model.
Monet [13] used the Fourier transform to derive the orbital parameters of binaries by exactly solving for
them from the minimum number of expansion coefficients. Such a minimalist approach behaves well
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only for small eccentricities. However, we are not looking for the orbital solution, so there is no need to
limit the expansion to low harmonic ranks.
Jarnadin [8] showed that the coefficient of each additional harmonic is dominated by a higher power of
the eccentricity. Since successively higher powers drop off more slowly as the eccentricity approaches
unity, the number of harmonics required for an adequate linear approximation increases with the eccen-
tricity. Moreover, the value of Ξ2 (Eq. 4) based upon that approximation also decreases as the number
of harmonics grows. Let Ξ2

L be Ξ2 based upon such a linear approximation with L coefficients. We
define the number of degrees of freedom of the nonlinear model as the smallest L such that Ξ2

L < Ξ2,
supplemented by three to account for e, P, and the periastron time.
One could object that the coefficients in the Fourier expansion are not independent. Even though there
are relations between them, these coefficients are linearly independent. That is the reason why additional
terms (besides those listed by Lucy [12]) are required when dealing with larger eccentricities. Regardless
of any functional dependency, the fact that all the coefficients are linearly independent is all it matters
as far as the number of degrees of freedom is concerned. As the power of the leading term increases,
for any eccentricity, there exists a coefficient index above which the coefficients are numerically linearly
dependent.
One needs to be a bit careful about what is meant by linear approximation of the model and Fourier
transform, especially in the context of astrometric binaries. The whole picture is a dual-period model:
a one-year period describing the absolute position of the center of mass (initial position, parallax and
proper motion) and the actual orbital model. The former is already linear so only the latter needs to
be linearly approximated through the Fourier expansion. The two components (in x and y-direction)
corresponding to the time independent part of that expansion are embedded in the position of the center
of mass so the expansion actually begins at the fundamental frequency.
As foreseen, the dimension of the linear approximation of the model increases with e. However, depend-
ing on the distribution of the observations, the very same eccentric orbit can be approximated with few
or many Fourier terms. There is therefore no way to directly estimate L from e without evaluating several
linear approximations. Owing to the speed of the step, this is a very minor drawback.
The reduction of the number of accepted (α = 1%) orbital solutions for synthetic single stars is sub-
stantial, from 17.3% to 0.7%. This is slightly below the theoretical value (only 1% of false detection
is expected). Once applied to the original observations, the same procedure yields 1.3% of potential
binaries. Only 48 objects are flagged as binaries with both data sets, thus suggesting that the distribution
of the observing time might be responsible for the result in very few cases only.

Conclusion

We have presented several approaches to circumvent the limitations of the F-test in case of a nonlinear
model. However, it was somehow assumed that the orbital model was fitted right away, i.e. adding seven
parameters to the single star model in once. In the framework of Gaia, the approach is slightly different: a
cascade of linear models with increasing size is considered. Simulations show that with a false detection
rate set to one per one thousand, we get four single stars with an orbital model out of 10,000.
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