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Eclipsing Binary Stars: the Royal Road to Stellar Astrophysics
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Introduction

Russell [1] famously described eclipses as the “royal road” to stellar astrophysics (see also [2]). From
photometric and spectroscopic observations it is possible to measure the masses and radii (to 1% or
better!), and thus surface gravities and mean densities, of stars in eclipsing binary systems (EBs) using
nothing more than geometry. Adding an effective temperature subsequently yields luminosity and then
distance (or vice versa) to high precision. This wealth of directly measurable quantities makes EBs the
primary source of empirical information on the properties of stars, and therefore a cornerstone of stellar
astrophysics.
In this review paper I summarise the current standing of EB research, present an overview of useful
analysis techniques, and conclude with a glance to the future. For a deeper discussion I recommend the
peerless reviews by Popper [3, 4], Andersen [5] and Torres et al. [6], and the textbook by Ron Hilditch
[7].

1. The Ghost of Christmas Past

John Goodricke (ably supported by his assistant Edward Pigott) was in 1783 the first to invoke the
concept of stellar eclipses, in order to explain the variations in the light of β Persei (Algol). William
Herschel [8] christened the term “binary star” in the course of his work on resolved astrometric binaries.
In 1889, Edward Pickering triggered the study of close binary systems when he noticed that the star Mizar
exhibited spectral lines which not only moved in wavelength but were sometimes doubled. Carl Vogel [9]
proved the binary nature of β Persei by detecting spectral line shifts before and after an eclipse, giving
rise to the term “spectroscopic binary”. Finally, Stebbins [10] discovered the first EB with a double-lined
spectrum, β Aurigae (Menkalinan). His measurements of the masses and radii of the two component
stars are surprisingly close to the modern values [11].
Whilst it is comparatively straightforward to interpret astrometric and radial velocity measurements of
binary systems, their eclipses are more challenging. Henry Norris Russell [12, 13] provided the first
rigorous mathematical structure for their comprehension and progressively developed the method before
encapsulating it in a textbook [14]. Zdeněk Kopal expounded a similarly encyclopaedic knowledge in
his own textbook [15]. His methods differed greatly from Russell’s approach, and the two men were not
on good terms [2]. The late 1960s and early 1970s saw the production of the first computer programs
to model binary systems, which have revolutionised the study of eclipses by laying them on a proper
physical basis. Chief architects of the revolution were Wilson and Devinney [16], the flexibility of whose
code arises from the inclusion of full Roche geometry. An honourable (but slightly biased) mention goes
to Paul Etzel [17, 18], whose EBOP code is orders of magnitude faster but restricted to systems whose
stars are well-separated and thus only modestly distorted. A large number and variety of other codes
exist, although few are widely used and many are now of only historical interest.

2. The Ghost of Christmas Present

From this point I concentrate on detached eclipsing binaries (dEBs), whose component stars are not
undergoing mass transfer except for the interception of stellar winds. These objects evolve as if they
were two single stars, so are the most appropriate reference points for stellar astrophysics (specifically
theoretical models of stellar evolution). The lack of mass transfer also makes them generally more
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tractable, although semi-detached (Algol) systems can be rather straightforward and also better distance
indicators [19]. A full study of one dEB requires both photometric and spectroscopic observations,
covering a large fraction of its orbital phases.

2.1 Photometric analysis of eclipsing binaries

The detailed shape of the two eclipses is related to the physical properties of the stars. The primary
eclipse occurs, by definition, when the hotter star is behind the cooler star (superior conjunction). The
primary eclipse is therefore deeper than the secondary eclipse (inferior conjunction). Exceptions to this
rule are possible if the orbit is not circular, in which case different surface areas can be eclipsed during
primary and secondary minimum thus altering their relative depth (or making one vanish entirely e.g.
SW CMa [20]).
The most important quantities which can be constrained are the fractional radii of the two stars, defined
as the actual radii divided by the orbital semi-major axis:

rA =
RA

a
rB =

RB

a
(1)

rA and rB can be quite correlated, so in practice it is often convenient to recast them as their sum and
ratio:

rA + rB k =
rB

rA
=

RB

RA
(2)

The orbital inclination, i, is another important photometric parameter. The relative depths of the primary
and secondary eclipses yield the ratio of the surface brightnesses of the two stars, J, a quantity which
is usually implicitly interpreted in terms of a Teff ratio. Total eclipses allow very precise photometric
parameters to be obtained. k and J can be strongly correlated when eclipses are not total, resulting in
uncertain fractional radii and, in particular, a poorly constrained light ratio between the two stars. This
problem can be solved by procuring an external measurement of the light ratio, such as from the spectral
lines of the stars (e.g. [21]).
Eccentric orbits present a complication by adding two more parameters to the mix: orbital eccentricity,
e, and the longitude of periastron, ω . These are best treated using the combination terms ecosω and
esinω , which are much less strongly correlated than e and ω themselves. In the approximation of small
eccentricity and i ∼ 90◦, the times and durations of the eclipses (tpri and tsec, and dpri and dsec) give the
combination terms [15]:

ecosω ≈ π
2

(
tsec − tpri

P
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)
esinω ≈

dsec −dpri

dsec +dpri
(3)

The quantity ecosω is therefore dependent on the time of secondary minimum relative to primary min-
imum, which is easy to measure very precisely. Conversely, esinω is given by the relative durations of
the two eclipses, which is much less precise. Whilst photometry is good for constraining ecosω it is
poor for specifying esinω . The opposite situation exists for radial velocities, so a well-behaved solution
incorporates both types of observations.
Limb darkening is a significant contributor to the shape of eclipses. Whilst a range of limb darkening
laws exist1, the linear law is satisfactory for the light curves of most EBs. The slightly more complex non-
linear laws are important for studying the transits of extrasolar planets [23] and perform similarly well to
each other in practise. A wide range of theoretically-calculated coefficients for the limb darkening laws
are available for observations taken in a standard photometric passband (e.g. [24]). When observations
are of good quality, it may be better to fit for the coefficients of the laws rather than fixing them at
theoretically-expected values (e.g. [25]).
The extraction of photometric parameters from a light curve requires a physical representation of the
binary system. The ‘industry standard’ computer program for this process is the Wilson-Devinney code

1See [22] and
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[16], whose implementation of Roche geometry allows detached, semi-detached and contact binaries to
be tackled. The input/output processes for this code are rather dated, making it an intimidating option
for inexperienced researchers. An improved and extended version with a graphical user interface is now
available, PHOEBE2, maintained by Andrej Prša [26]. If one has a system whose stars suffer only mild
tidal distortions and no mass transfer, the JKTEBOP3 code is a good option. This code is a development
of EBOP [17, 18], maintained by the current author [27]. Its chief advantages are simplicity and speed,
which makes it well-suited to datasets which are large or require a high numerical precision. Another
asset of speed is the ability to run extensive error analysis algorithms.
Correlations between photometric parameters are inescapable, and lie in the binary stars’ message
to us rather than our methods of decoding the message. In such a situation it is important to perform
careful error analyses which explore these correlations and return reliable error bars. Formal errors from
a covariance matrix, as outputted by many analysis codes, are unreliable as they do not account well
for parameter correlations. Alternatives include χ2-chase, Monte Carlo simulations [27], Markov Chain
Monte Carlo [28] and residual permutation [22]. The Numerical Recipes4 textbook [29], chapter 14, is
an excellent starting point for interested readers.

2.2 Radial velocity analysis of eclipsing binaries

Photometry is only half the story: a full analysis requires radial velocity (RV) measurements to measure
the masses of the stars and the overall scale of the system. A typical requirement is thirty spectra of
sufficient quality to reliably detect the spectral lines from both stars. They should be evenly distributed
in orbital phase, but with a concentration on the quadrature phases when the velocities of the two stars
are most divergent. Semi-detached EBs (such as Algol) are less demanding, as RVs are only needed for
one of the stars. This is because the surface of the secondary star coincides with its Roche lobe, allowing
its radius to be directly connected to the mass ratio.
For late-type stars, which rotate slowly, échelle spectrographs can provide marvellous results (e.g. [30]).
For early-type stars, which tend to have high rotational velocities and few spectral lines, moderate spec-
tral resolution is sufficient but a high signal to noise ratio (S/N) is a necessity. For these, the mutual
interference (blending) of lines from the two stars is a long-standing issue which could result in masses
underestimated by 25% [31].
RV measurements can be obtained in many ways. Fitting Gaussian functions to individual spectral
lines (using a double-Gaussian for double lines) works well for isolated lines [21]. Cross-correlation
[32, 33] allows one to include multiple spectral lines, but requires a template spectrum to compare to
the observed spectra. It also suffers more from line blending, as contributions arise from the template as
well as the observed spectra. TODCOR two-dimensional cross-correlation [34] uses different template
spectra for the two stars. This is useful if the stars have quite different spectral characteristics, but is
no better than normal cross-correlation if the stars are very similar [21]. Broadening functions [35] is
a comparable approach to cross-correlation. This similarly requires a template spectrum but does not
suffer from excess line blending due to this. Spectral disentangling [36] is a fundamentally different
method which considers all observed spectra simultaneously and does not require a template spectrum. It
assumes that each observed double-lined spectrum can be represented by the individual spectra of the two
stars which have been shifted in RV and added together. This allows the best-fitting individual spectra
to be calculated simultaneously with the orbital solution. Spectral disentangling does not suffer from
line blending and returns high-quality spectra of the individual stars, but can be sensitive to continuum
normalisation and may require a lot of CPU time. A detailed review is given by [37].
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2.3 Spectral analysis of eclipsing binaries

Whilst analysis of light and velocity curves is sufficient to give the masses and radii of the stars in
an EB, they do not give luminosities or distance yet. For that we require effective temperature (Teff)
measurements. These can be obtained from calibrations against photometric colour indices (e.g. [38])
but this does not work well for early-type stars (partly due to the sensitivity to reddening) and requires
colour indices for the individual stars. An alternative is to deduce spectral types and convert them to Teff,
once again using calibrations, but this suffers from the discreteness of the spectral classification system
as well as uncertainties in the Teff scale (particularly for high-mass and low-mass stars).
A better approach is to model the spectra of the stars directly, as is frequently done for single stars, in
order to determine their atmospheric parameters. The details of the method vary widely depending on
the type of star to be analysed, so I will not dwell on the methods here. Spectral disentangling holds
an advantage for these analyses, as one can use the high-quality disentangled spectra rather than the
individual composite spectra. EBs themselves show a major asset over single stars, in that their surface
gravities are measured to such high accuracy that they can be fixed at the known values and thereafter
ignored. This is particularly useful when measuring Teff, which is often strongly correlated with surface
gravity.
Once the surface gravity and Teff of each star is known, its spectrum is well suited to deriving the chem-
ical composition of its photosphere. This can be performed directly on the observed spectra in many
cases (e.g. [42]). Disentangled spectra are once again a useful alternative, due to their high S/N, but
have a complication. The continuum light ratio of the stars cannot be determined in isolation, as such
information simply does not exist in the observed spectra, so their continuum levels are unknown. This
can be solved either by including the continuum level as an additional parameter to be fitted for [39] or
by using the light ratio(s) known from the photometric analysis to specify the continuum level directly
(e.g. [40]). Abundance analyses can then be carried out using the usual methods for single stars [41].

2.4 Putting it all together

Analysis of the light curves generally gives: Porb, rA, rB, inclination i and ecosω
Analysis of the RV curves normally gives: velocity amplitudes KA and KB, plus esinω
Then: ecosω and esinω ⇒ e and ω
Then: KA and KB and i and e ⇒ masses MA and MB and a
Then: rA and rB and a ⇒ RA and RB
Then: MA and MB and RA and RB ⇒ surface gravities and densities
Now we add in Teff: TeffA and TeffB and RA and RB ⇒ luminosities LA and LB and distance
Distance measurement is an important result, and also relies on the existence of reliable apparent magni-
tudes in standard photometric passbands. Redder passbands are better (particularly near-infrared JHK) as
they are less sensitive to interstellar extinction. The traditional way to measure distance is by using bolo-
metric corrections to covert absolute bolometric magnitudes (which are calculated from the luminosities)
to V -band absolute magnitudes and then relating these to the observed V -band apparent magnitude (see
[43]). Alternative methods using surface brightness calibrations have been outlined by [44] and [45],
among others.

3. The Ghost of Christmas Yet to Come

The primary use of dEBs is as checks on the success of theoretical predictions (e.g. [46]) or to investigate
the physical processes included in the models, such as mixing length [47], convective core overshooting
[48], the chemical enrichment law [49] and limb darkening coefficients from model atmospheres [50].
The study of dEBs in stellar clusters is a promising avenue [51] – recent results for dEBs in the open
cluster NGC 6791 are of such high precision that the primary uncertainty in its age and chemical com-
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position is now the variation between the predictions of different sets of stellar models [52, 53]. Models
of low-mass stars have recently enjoyed renewed interest as vital ingredients in analyses of transiting
extrasolar planets [54].
The cosmological distance scale rests on distances to nearby galaxies [55] which are generally found
using ‘standard candles’ such as δ Cepheids – objects whose luminosities can be determined by calibrat-
ing them on nearby specimens. EBs can be direct indicators, rather than standard candles, because we
do not need to calibrate them on neighbouring examples. Distance and reddening can instead be deter-
mined simultaneously using their measured luminosities (from Teff and radius) and apparent magnitudes
in multiple passbands. EBs have been used to measure distances to the nearby galaxies LMC [56, 57],
SMC [58, 59], M 31 [60] and M33 [61], as well as many open clusters within our own Milky Way.
The studies of EBs cited above are primarily distinguishable by the amount of effort required for each
object: they can devour a lot of telescope time. Detailed analyses of EBs have now been available for
roughly a century, during which only 127 objects have been studied in detail (a catalogue of well-studied
dEBs [DEBCat] is maintained by the author at ).
By comparison, the General Catalogue of Variable Stars lists nearly 1000 ‘EA’ systems, so supply
already greatly exceeds demand.
Observational astronomy is currently undergoing an overwhelming shift towards survey projects, and in
the future this will fundamentally change the opportunities to study EBs. Myriad large-scale photometric
surveys are already being performed, and many more are planned. Most obtain repeated photometric
measurements of point sources and so are able to discover new EBs. As an example, EB science has
already been extracted from the ground-based planet search projects TrES and SuperWASP [62, 63, 64,
65], and the similarly-targeted space missions CoRoT and Kepler [66, 67, 68]. These missions hold the
advantage of obtaining thousands of datapoints per object, often of extremely high quality, thus allowing
important results to be obtained with modest or no reliance on follow-up observations. Kepler represents
the current state-of-the-art for EB studies.
Further into the future, major missions such as Gaia and LSST will discover millions of EBs [69, 70] but
obtain very few datapoints per object. A detailed study of each one is clearly hopeless. Automated meth-
ods will be able to deliver a limited number of parameters for many of these millions of EBs [62, 71, 69],
so the major advances will probably relate to statistical studies of larger populations of these objects.
However, it will be possible to cherry-pick the most interesting or important EBs for further study. Areas
meriting attention include: Low-mass EBs, as the properties of the known examples differ from theoreti-
cal predictions by up to 15% in radius [72] and low-mass stars host most of the known extrasolar planets;
High-mass EBs, as massive stars are major contributors to the chemical and kinematic population of
galaxies; Asteroseismology of EBs, which will allow pulsation frequencies to be measured for stars of
known mass and radius; Giant-star EBs, to provide constraints on stellar evolution [73]; EBs in open
clusters, again for stellar evolutionary studies; and EBs in external galaxies, for improving the local
calibration of the cosmological distance scale.
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