

Spectroscopic binary processing within Gaia DPAC Paris 10-12/10/2011

Y. Damerdji, T. Morel, E. Gosset (ULg, Belgium) With the help of CU4/NSS team (D. Pourbaix, F. Arenou, C. Siopis, A. Sozzetti, P. Gavras, ...) (with contributions from P. Geurts & L. Delchambre)

Plan

- DU434 work package as part of Gaia DPAC / CU4.
- Algorithms used in DU434.
- Performances of the implemented algorithms.
- Current development.
- Outlook.

Presentation of Gaia DPAC / DU434 work package

- DU434 : part of CU4 in Gaia Data Processing and Analysis Consortium
- > DU434 : spectroscopic binary work package.

DU434 receives time series of radial velocities and observed RVS spectra from DPAC / CU6 of all suspected spectroscopic variable stars.

> DU434 derives orbital elements (period, center of mass velocity, semi amplitude, eccentricity, longitude of periastron and time of periastron passage) for SB1 and SB2 stars.

Presentation of Gaia DPAC / DU434 work package

RVS transits Median value is 50 transits – Mean value is 51.8 transits

Spectral type	<i>V</i> = 6	<i>V</i> = 9	<i>V</i> = 12	<i>V</i> = 14
G5 V	0.4	2	5	15
B5 V	3	10	30	-

Radial velocity precision (1σ) for single stars within CU6 / Single Transit analysis Viala Y., Blomme R., Frémat Y., et al WP650 STR document GAIA-C6-SP-OPM-YV-007-1

Used algorithms in DU434 Gaia package

- Spectroscopic binary processing is a blind processing : no human intervention.
- Pre-selection of bona fide spectroscopic variable stars done "en amont" (see Dimitri's talk)
- For each input time series of radial velocities and observed spectra we :
- ➤ Clean the inputs from erroneous data
- → Search for the orbital period using time series of radial velocities.
- → Search for an approached orbital solution using time series of radial velocities.
- ➤ Refine the orbital solution using time series of radial velocities.
- → Test the significance of the found eccentricity by comparing it with a circular orbit.
- Compare the spectroscopic solution with the trend (polynomial) solution.
- → Refine the spectroscopic binary solution using time series of observed spectra.

Used algorithms in DU434 Gaia package Period search : the hardest task

Many methods tested : combination of 2 methods :

- Preselection of best local maxima in the periodogram using HMM method: Heck, A., Manfroid, J., Mersch, G. 1985, A&AS, 59, 63 Fit of a simple sin function to the phase diagram (arbitrary t₀). Applied to Vr₁ for SB1 and (|Vr₂ – Vr₁|,Vr₁) for SB2
- Selection of the best period and derivation of the approached solution using : Zechmeister & Kürster, 2009, A&A, 577 Based on HMM : fit of a simple sin function to the true anomaly (v = f(e,Tp)).
 Vr₁ = [V₀₁ + K₁ e cos(ω₁)] + [K₁ cos(ω₁)] cos(v) + [-K₁ sin(ω₁)] sin(v)
 Vr₂ = [V₀₂ + K₂ e cos(ω₂)] + [K₂ cos(ω₂)] cos(v) + [-K₂ sin(ω₂)] sin(v)
 Problem : V₀₂ != V₀₁ and ω₂ != π + ω₁ => consider the average mean ?

Used algorithms in DU434 Gaia package

- The approached orbital solution determination : some alternative methods :
 - Commonly used methods : Lehmann-Filhès, Wilsing Russell.
 - Genetic algorithm coupled with Zechmeister & Kürster periodogram.
 - Pattern recognition algorithm (discussed in current development section).
- The approached orbital solution refined using :
 - > Sterne algorithm for very small eccentricities (e < 0.03)
 - > Schlesinger method for larger eccentricities (e > 0.03)
 - > Levenberg-Marquardt minimisation

Current performances

The simulations are based on :

- Gaia simulator (Gaia Object Generator) : 10 million stars containing 80 000 and 10 000 of SB1 and SB2 respectively having a variability probability > 0.99865.
- Internal DU434 simulated curve using the Gaia satellite scanning law to generate the RVS transit dates.

Y. Damerdji, T. Morel, E. Gosset – Pas de deux (Paris)

Y. Damerdji, T. Morel, E. Gosset – Pas de deux (Paris)

Recovery of eccentricity – SB1

Recovery of eccentricity – SB2

Y. Damerdji, T. Morel, E. Gosset – Pas de deux (Paris)

600 SB1f(GoF)400 SB2 200 0 -2 2 0 $^{-4}$ 4 GoF

Recovered period - no trend, Dashed: with CU7 periods

Y. Damerdji, T. Morel, E. Gosset – Pas de deux (Paris)

Orbital frequencies – SB1

Orbital frequencies – SB2

Eccentricity – SB1

 $E_p/\sigma_p = (e \text{ refined } - e \text{ real})/\sigma e$

SB1, 120000 simulations, N=40, σ =15 km/s

Y. Damerdji, T. Morel, E. Gosset – Pas de deux (Paris)

Eccentricity – SB2

 $E_p/\sigma_p = (e \text{ refined } - e \text{ real})/\sigma e$

SB2, 120000 simulations, N=20, σ =30 km/s

Y. Damerdji, T. Morel, E. Gosset – Pas de deux (Paris)

Current developments

- Test of eccentricity significance
- Period significance level.
- SB2 ambiguity : sorting velocities
- Pattern recognition for radial velocity curves.

Test of eccentricity significance Circular orbits with known periods

Y. Damerdji, T. Morel, E. Gosset – Pas de deux (Paris)

Test of eccentricity significance Circular orbits with unknown periods

Y. Damerdji, T. Morel, E. Gosset – Pas de deux (Paris)

Test of eccentricity significance Elliptical orbits with known periods

Y. Damerdji, T. Morel, E. Gosset – Pas de deux (Paris)

Test of eccentricity significance Elliptical orbits with unknown periods

Period significance level

Y. Damerdji, T. Morel, E. Gosset – Pas de deux (Paris)

Sorting SB2 velocities

K1=100 km s⁻¹, K2 = 300 km s⁻¹, e = 0.3, σ = 20 km s⁻¹

Sorting SB2 velocities

Y. Damerdji, T. Morel, E. Gosset – Pas de deux (Paris)

Sorting SB2 velocities

Y. Damerdji, T. Morel, E. Gosset – Pas de deux (Paris)

Pattern recognition SB1

Y. Damerdji, T. Morel, E. Gosset – Pas de deux (Paris)

Gaia

PAC

Y. Damerdji, T. Morel, E. Gosset – Pas de deux (Paris)