Resolved Binaries Among TNOs: Statistical Inversion

Will Grundy Lowell Observatory

- Keith Noll
- Denise Stephens
- Susan Benecchi
- Henry Roe
- John Stansberry

- Simon Porter
- Marc Buie
- Chad Trujillo
- Jenni Virtanen
- Karri Muinonen

Asteroid Belt

Edgeworth-Kuiper Belt

Kuiper Belt / Transneptunian Population

- Total mass <1 M_{\oplus}
- Distinct dynamical classes
- Diverse colors and compositions
- Binaries: P from 5 days to >10 years, masses from 10¹⁷ to 10²² kg
- Largest >2000 km with atmospheres, active surfaces, etc.
- More typically 100 km, cold, inert

Binaries Among TNOs

Current Data Sources

PSF-Fitting with Tiny Tim

combined model

data - primary model

PSF-Fitting LGS AO Example

What Can We Learn From One Image?

Brightnesses Sky-plane separation

How Similar are Separation and a?

Collection of Orbits Consistent With Data

Monte Carlo Cloud of Orbits

Monte Carlo Cloud of Orbits

Monte Carlo Cloud of Orbits

Project To Sky Plane at Time T

Observation Timing Figure of Merit

Area of convex hull?

Observation Timing Figure of Merit

Area covered by points sized by typical astrometric precision?

Observation Timing Figure of Merit

Mean distance between points

Optimal Scheduling

Generating Random Orbits

- Simplest: try orbital element values at random (or grid search), keep only those with small χ^2
- Choose 2 "anchor" observations, generate random points along those lines of sight, solve 2 point boundary value problem for orbital elements, keep those with small χ^2
- Use 3 observations and Thiele-Innes method
- Other...

Using 2 Anchor Observations

Using 2 Anchor Observations

Not All Orbits Are Equally Valuable \rightarrow Need To Weight Them

Mass or Location

See:

Virtanen et al. 2001, 2003, 2008 Virtanen & Muinonen 2006

Complications: Parallax

 \bigcap

- From Earth motion
- Also binary motion around Sun

Digression: Mutual Events

Summary

- Partial knowledge can be used to optimize scheduling of follow-up observations
- A Monte Carlo cloud of possible orbits is a useful tool for this
- Our method of generating and weighting the orbits requires knowledge of astrometric uncertainties and an anchor pair from a single orbit

Backup Slides

Orbits...

Triple System with Keck LGS AO 47171 1999 TC₃₆

(see Benecchi et al. Icarus 2010 207, 978-991)

Densities From Mass + Size

Eccentricity Distribution

Tightness -vs- Inclination

Tightness -vs- Excitation

Inclination Distribution

Sky-Plane Mirror Ambiguity
2 orbit solutions: same P, a, e,
but different i, ε, Ω, ω

