Discovery and Characterization of Trans-Neptunian Binaries in Large-Scale Surveys

Alex Harrison Parker - New Horizons Outer Solar System Science Fellow - CfA

October 10 2011 - Orbital Couples: "Pas De Deux" In The Solar System And The Milky Way

Ultra-Wide Trans-Neptunian Binaries

- Tail of the separation distribution
 - * ~0.5" 5" mean separation as observed from Earth
 - Several to several tens of percent of Hill radius
- Found exclusively in Cold Classical Kuiper Belt (or can be traced there)
- Lower limit on extant population: ~1.5% of all Cold Classical Kuiper Belt Objects are ultra-wide binaries

Ultra-Wide Trans-Neptunian Binaries

- Valuable dynamical tracers
 - * Delicate, sensitive to disruption by collisions or flybys
- Mutual orbits constrain:
 - Migration history of the giant planets
 - Extent of collisional grinding in the Kuiper Belt
 - Environment and processes in the primordial disk

"Cold" disk

Thin I

Very little random motion

- Makes binaries efficiently (many-body processes)
- Wide binaries can survive
- Only low mutual inclinations

Only retrograde orientations

"Hot" disk

Lots of random motion

- Makes fewer binaries (three-body processes) *
- Only tightly-bound binaries survive
- Random mutual inclinations *
- **Random orientations** *

Current sample

* Parker et al. 2011:

* Up to 10 years of observations for 7 systems with $a/R_H > 0.07$

 Accurate and precise mutual orbits, mirror degeneracy broken at >95% confidence

* Sheppard et al. (in prep):

* One additional ultra-wide binary with comparable orbit

Example observations

Example orbit fits

Example orbit fits

The Moon L5c02 b

9

Separation comparison: 2001 QW322 - football pitch separating two footballs

- Prefer low mutual inclinations (orbits prefer plane of Solar System), unlike tighter binaries
- Roughly equal numbers prograde and retrograde
- Range of eccentricities: 0.2 0.9
- Collisional lifetimes limit ~1 km impactor population in KB
- Wide separations sensitive to disruption by close encounters with Neptune - CCKB was not emplaced by scattering

Discovery simulations: LSST

- Compare predicted seeing for LSST to on-sky separation distribution for known binaries
- * How many resolved visits would we expect per binary?

Discovery simulations: LSST

- Compare predicted seeing for LSST to on-sky separation distribution for known binaries
- * How many resolved visits would we expect per binary?

Discovery simulations: LSST

- All binaries from Parker et al.
 2011 would be resolved in at least 18% of LSST visits over
 10 years of operation
- With planned baseline of ~230 r-band visits per field, minimum number of resolved epochs is ~40.
- Compare to Parker et al. maximum sampling of 35 epochs (2001 QW322)

How many UW-TNBs?

- Lin et al. (2010): UW-TNBs at least 1.5% of Cold Classical Kuiper Belt (95% lower limit)
- Assume no binary fraction variation with radius
- CFEPS estimates ~17,000
 objects in CCKB at magnitude
 limit of LSST
 - ~250 ultra-wide binaries

How many UW-TNBs?

- Biases to take care of:
 - Albedo vs. luminosity function
 - Separation
 - Orientation

What can we do with 250 binaries?

Extremely detailed mutual orbit distributions

- eg., is inclination distribution different for prograde / retrograde systems?
- Color / orbit trends
- Detailed host population information
 - * eg., does the "Kernel" component host wide binaries?

What can we do with 250 binaries?

- Albedo distribution vs. binary fraction variations
 - Collisional evolution with certain impactor distributions will cause a strong trend in binary fraction with radius
 - Can be used to measure total extent of collisional grinding

Albedos and Radii

Albedos and Radii

Albedos and Radii

Exponential binary frac decay, broad albedo dist. No binary fraction var, broad albedo dist

Conclusions

- Ultra-Wide Trans-Neptunian Binaries are valuable tracers of the dynamical history of the outer Solar System
- Wide-area surveys like LSST will discover and characterize the orbits of hundreds of UW-TNBs
- Careful debiasing will allow disentanglement of albedo distribution and binary fraction trends, further constraining collisional grinding in the Kuiper Belt

