Orbit determination of eclipsing binary asteroids from photometry

Petr Scheirich, Petr Pravec

Ondrejov obs., Czech Republic

and many observers

Orbiting couples: "pas de deux" in the Solar System and the Milky Way

Paris, October 10-12, 2011

Lightcurve of ordinary asteroid

First binaries resolved from photometry

1994 AW₁ (Pravec and Hahn, 1997)

First binaries resolved from photometry

1996 FG₃ (Pravec et al, 2000)

Models of binaries derived from photometry

- 10 NEA binaries (22 oppositions)
- 15 MBA binaries (33 oppositions)

Where all the data come from?

	1
$\mathbf{\circ}$	2
U	3
-	4
ocli	5
COIL	6

Orbiting coup

1	Ondřejov Observatory, Czech Republic	0.65
2	European Southern Observatory, Chile	0.6
3	Kharkiv Observatory, Ukraine	0.7
4	Elginfield Observatory, Ontario, Canada	1.2
5	Table Mountain Observatory, California	0.6
6	Carbuncle Hill Observatory, Rhode Island	0.35
7	Palmer Divide Observatory, Colorado	0.5
8	River Oaks Observatory, Texas	0.41
9	Modra Observatory, Slovakia	0.6
10	Badlands Observatory, South Dakota	0.66
11	Stull Observatory, New York	0.82
12	Mauna Kea, Hawaii	2.2
13	Steward Observatory, Arizona	1.5
14	MacLean Observatory, California	0.55
15	Baton Rouge Observatory, Louisiana	0.5
16	Xinglong St., Beijing Observatory, China	0.6
17	Lick Observatory, California	3.0
18	La Palma Observatory, Canary Islands	1.2
19	Hunters Hill Observatory, Australia	0.25
20	Whitin Observatory, Massachusetts	0.61
21	Blauvac Observatory, France	0.31
22	Village-Neuf Observatory, France	0.25
23	FX. Bagnoud Observatory, Switzerland	0.6
24	Guitalens, France	0.20
25	Saint-Hélène Observatory, France	0.20
26	Antibes Observatory, France	0.25

P. Kušnirák, L. Šarounová, P. Pravec, M. Wolf S. Mottola, G. Hahn Yu. Krugly, F. Velichko P. Brown, G. Esquerdo, Z. Krzeminski, N. Kaiser M. Hicks D. Pray B. Warner W. Holliday A. Galád, Š. Gajdoš, J. Világi R. Dyvig, V. Reddy, K. Kirsch D. DeGraff D. Tholen, R. Whiteley A. Grauer, S. Larson R. Stephens, L. Snyder W. Cooney H. Yan, J. Zhu E Marchis M. Grenon, G. Burki D. Higgins G. Funkhouser, B. Knight, S. Slivan R. Roy C. Demeautis, D. Matter N. Waelchli, Y. Revaz, R. Behrend A. Klotz, M. Rieugné, P. Thierry V. Cotrez, C. Demeautis, R. Behrend L. Brunetto, G. Kober

2006

Why to do photometry of binaries?

Why to do photometry of binaries?

- poles distribution
- dynamical evolution

Lightcurve of binary asteroid

Long-period component extraction

(The long period component of) Lightcurve simulation — the direct problem

Input parameters:

- Heliocentric orbit 🔀 geometry
- Keplerian elements of mutual orbit (circular, eccentric)

- Shape and size ratio of components
- Scattering law

Two-axis ellipsoids or any arbitrary shape approximated by polyhedra with triangular facets

The lightcurve of the system is computed using simple ray-traycing code.

The inverse problem

Fitted parameters:

• Keplerian elements of mutual orbit:

- a/A_p semimajor axis
- $I_P ecl.$ longitude of orbit's pole
- $\bullet b_{P} ecl.$ latitude of orbit's pole
- P_{orb} sidereal orbital period
- L_0^{-} mean length of secondary at given epoch
- e eccentricity
- w argument of pericenter
- Shape and size ratio of components:
 - flattening of primary A_p/C_p ,
 - elongation of secondary A_s/C_s ,
 - size ratio of both bodies A_s / A_p

Pre-estimates of initial parameters

- Synodic orbital period
- Components size ratio

$$\Delta m = 2.5 \log \left(\frac{C_0}{C_1}\right) = 2.5 \log \left[1 + \left(\frac{D_s}{D_p}\right)^2\right]$$

$$F(t) = C_0 + \sum_{j=1}^{m} \left[C_{j0} \cos \frac{2\pi j}{P_1} (t - t_0) + S_{j0} \sin \frac{2\pi j}{P_1} (t - t_0) \right] + \sum_{k=1}^{m} \left[C_{0k} \cos \frac{2\pi k}{P_2} (t - t_0) + S_{0k} \sin \frac{2\pi k}{P_2} (t - t_0) \right]$$

Pre-estimates of initial parameters

Sidereal orbital period and L_0 (argument of mean length of secondary for JD_0):

Visual identification of contacts:

Time-increasing L of contacts should lie on a straight line defined by

$$L' = nT + L_0$$

where $n = 2 \mathbb{W} / P_{sid}$. This can be applied for fixed orbital pole only

Pre-estimates of initial parameters

Maps of parameters a/R_P , P_{orb} and L_0 precomputed from contacts identified in lightcurve for various directions of mutual orbit's normal (I_P, b_P).

From each starting point in the grid: minimization using *Nelder and Mead simplex algorithm.*

Some results

Observational circumstances of modeled binary NEAs.

	Object	Apparition	Time span (d)	Geo. arc (°)	Hel. arc (°)	Phase angle (°)
(175706)	1996 FG ₃	1998 Dec–99 Jan	36	30	27	14-32
(65803)	Didymos	2003 Nov-Dec	29	38	29	2-19
(66391)	1999 KW4	2000 May–Jun ^a	35	90	17	62-76
		2001 May–Jun	18	99	9	33-66
(185851)	2000 DP ₁₀₇	2000 Sep-Oct	8	19	7	30-38
(66063)	1998 RO ₁	2002 Sep ^a	3	6	1	3-8
		2003 Sep	9	33	5	12-33
		2004 Sep	11	28	6	30-36

Object (apparition)	Solution	RMS	D_2/D_1	a/A_1	λ _p (°)
(175706) 1996 FG3 (1998)	Ι	0.018	$0.28^{+0.01}_{-0.02}$	$3.1^{+0.9}_{-0.5}$	242 ⁺⁹⁶
(65803) Didymos (2003)	I	0.012	$0.22^{+0.01}_{-0.01}$	$2.8^{+0.2}_{-0.2}$	157^{+4}_{-7}
	П	0.012	$0.21^{+0.01}_{-0.01}$	$2.9^{+0.3}_{-0.2}$	329+11 329-194
(66391) 1999 KW4 (2001)	I	0.036	$0.46^{+0.06}_{-0.06}$	$3.2^{+0.6}_{-0.5}$	341^{+9}_{-7}
(185851) 2000 DP ₁₀₇ (2000)	I	0.027	$0.43^{+0.3}_{-0.04}$	$5.0^{+2.0}_{-0.3}$	291^{+18}_{-26}
	П	0.026	$0.43^{+0.2}_{-0.05}$	$4.9^{+1.2}_{-0.2}$	31^{+23}_{-12}
(66063) 1998 RO1 (2003)	I	0.027	$0.48^{+0.03}_{-0.03}$	$3.0^{+0.7}_{-0.4}$	277^{+180}_{-180}
(66063) 1998 RO ₁ (2004)	Ι	0.025	$0.48\substack{+0.03\\-0.03}$	$3.5^{+0.7}_{-0.6}$	274 ⁺¹⁷ -73
Object (apparition)	Solution	ω (°)	L ₀ (°)	Epoch (MJD)	A_2/A_1
(175706) 1996 FG3 (1998)	I	79 ⁺⁷⁰	43 ⁺⁹⁶	51150.6792	0.33 ^{+0.07}
(65803) Didymos (2003)	I	349^{+13}_{-34}	120^{+3}_{-6}	52963.8922	$0.21^{+0.02}_{-0.02}$
	II	174^{+95}_{-25}	301 ⁺¹⁰ -191		$0.20^{+0.02}_{-0.01}$
(66391) 1999 KW4 (2001)	I	264_{-64}^{+67}	129^{+9}_{-8}	52054.0398	$0.51^{+0.08}_{-0.16}$
(185851) 2000 DP ₁₀₇ (2000)	I	328^{+16}_{-11}	270^{+20}_{-11}	51812.1522	$0.44^{+0.16}_{-0.09}$
	II	161^{+23}_{-19}	89 ⁺²⁶ -18		0.37+0.20
(66063) 1998 RO1 (2003)	I	182_{-176}^{+87}	252^{+179}_{-180}	52898.8447	$0.56^{+0.09}_{-0.09}$
(66063) 1998 RO1 (2004)	I	188^{+68}_{-15}	201+74	53258.1605	$0.45^{+0.25}_{-0.04}$

Estimated parameters of binary NEAs, with 3- σ errors.

Object (apparition)	Solu	λ _p (°)	β _p (°)	P_{orb}^{sid} (h)	е	
(175706) 1996 FG3 (1998)	I	242^{+96}_{-96}	-84_5	$16.14^{+0.01}_{-0.01}$	0.10+0.12	6
(65803) Didymos (2003)	I	157 ⁺⁴ -7	$+19^{+45}_{-15}$	$11.906^{+0.004}_{-0.01}$	$0.09^{+0.07}_{-0.09}$	
	II	329^{+11}_{-194}	-70^{+25}_{-15}	$11.920^{+0.004}_{-0.006}$	$0.02^{+0.01}_{-0.02}$	1 94
(66391) 1999 KW4 (2001)	I	341^{+9}_{-7}	-56^{+20}_{-18}	$17.42^{+0.01}_{-0.03}$	$0.04^{+0.09}_{-0.04}$	
(185851) 2000 DP ₁₀₇ (2000)	I	291^{+18}_{-26}	$+80^{+7}_{-40}$	42.09 ^{+0.13} -0.08	$0.05^{+0.19}_{-0.05}$	8
	II	31^{+23}_{-12}	-61^{+18}_{-10}	$42.79_{-0.11}^{+0.09}$	$0.09^{+0.06}_{-0.06}$	
(66063) 1998 RO1 (2003)	I	277^{+180}_{-180}	$+37^{+53}_{-2}$	$14.54^{+0.02}_{-0.01}$	$0.04^{+0.08}_{-0.04}$	80 80
(66063) 1998 RO ₁ (2004)	I	274^{+17}_{-73}	48^{+28}_{-6}	$14.54_{-0.02}^{+0.03}$	$0.06\substack{+0.04\\-0.06}$	3
Object (apparition)	Solu	A_2/A_1	A_1/C_1	A_2/C_2	$ ho~({ m gcm^{-3}})$	₂ /A ₁
(175706) 1996 FG3 (1998)	Ι	0.33+0.07	$1.2^{+0.5}_{-0.2}$	$1.4^{+0.3}_{-0.2}$	$1.4^{+1.5}_{-0.6}$	33 ^{+0.07}
(65803) Didymos (2003)	Ι	$0.21^{+0.02}_{-0.02}$	$1.0^{+0.3}_{-0.0}$	$1.0^{+0.1}_{-0.0}$	$1.7^{+0.6}_{-0.4}$	$21^{+0.02}_{-0.02}$
	Ш	$0.20^{+0.02}_{-0.01}$	$1.1^{+0.2}_{-0.1}$	$1.0^{+0.1}_{-0.0}$	$2.1^{+0.8}_{-0.5}$	$20^{+0.02}_{-0.01}$
(66391) 1999 KW4 (2001)	I	$0.51^{+0.08}_{-0.16}$	$1.1^{+0.9}_{-0.1}$	$1.2^{+0.2}_{-0.2}$	$1.2^{+1.1}_{-0.5}$	51 ^{+0.08} -0.16
(185851) 2000 DP107 (2000)	Ι	$0.44^{+0.16}_{-0.09}$	$1.2^{+1.1}_{-0.2}$	$1.2^{+0.1}_{-0.1}$	$0.8^{+1.1}_{-0.1}$	$44^{+0.16}_{-0.09}$
	Ш	$0.37^{+0.20}_{-0.10}$	$1.6^{+1.6}_{-0.6}$	$1.1^{+0.2}_{-0.1}$	$1.1^{+2.5}_{-0.6}$	37 ^{+0.20}
(66063) 1998 RO1 (2003)	Ι	$0.56^{+0.09}_{-0.09}$	$1.2^{+0.6}_{-0.2}$	$1.4^{+0.3}_{-0.1}$	$1.5^{+1.7}_{-0.6}$	56 ^{+0.09}
(66063) 1998 RO1 (2004)	Ι	$0.45_{-0.04}^{+0.25}$	$2.1^{+0.4}_{-1.1}$	$1.5^{+0.6}_{-0.1}$	$4.1^{+0.8}_{-2.8}$	45+0.25

Estimated parameters of binary NEAs, with 3- σ errors.

(Scheirich and Pravec, 2009)

Matching with radar observations

Precession of mutual orbit?

(35107) 1991 VH (1997)

Precession of mutual orbit? (35107) 1991 VH (2003) 90 I. ÷ 60 IV. 30 Ър 0 -30 ₩IJ **II**. -60 -90 60 180 210 30 90 150 240 270 330 360 0 120 300 $\lambda_{\rm p}$

Precession of mutual orbit?

- (35107) 1991 VH three periods in the lightcurve:
- 2.6236 h (probably) primary's rotation
- 32.63 h orbital period of secondary
- 12.836 h ???
 - rotation of secondary?
 - precession of primary?

MBA multi-opposition data

Binary system	Apparitions	$D_1(\mathrm{km})$	D_{2}/D_{1}	$P_1(h)$	$P_{ m orb}(h)$	$P_2(h)$	$a_{\rm orb}/D_1$	$L_{ m p}~(^{\circ})$	B_{1}	, (°)	ε (°)	$(a_1/c_1)_{\max}$	e_{max}	$a_{\rm h}({\rm AU})$	$i_{ m h}(^{\circ})$	
(1338) Duponta	07, 10	7.4	0.24	3.85453	17.5680	(17.57)	2.0	0 - 360	+66 -	+90	0 - 21	3.3^a	0.14(07)	2.264	4.82	
			$\pm.02$	$\pm .00009$	$\pm .0001$	$\pm.01$										
(1453) Fennia	07, 09, 11	7.0	0.28	4.4121	23.00351		2.6	89 - 118	-70 -	-62	172 - 180	2.4^{b}	0.03(11)	1.897	23.68	
			$\pm.02$	$\pm .0003$	$\pm.00005$											
(1830) Pogson	07, 08, 10	7.8	(0.30)	2.57003	24.24580		(2.5)	130 - 274	-86 -	-74	162 - 180	3.4^c	0.10(08)	2.188	3.95	
			$\pm.02$	$\pm .00006$	$\pm .00006$											
(2006) Polonskaya	05, 08, 10	5.5	(0.23)	3.1180	19.153^{d}		(2.1)							2.325	4.92	
			$\pm.03$	$\pm .0001$							_					
(2044) Wirt^{e}	05/06, 08, 10	5.6	0.25	3.6897	18.976	(18.97)	2.1	349 - 23	-72 -	-52	120 - 143 ^f	1.5	0.10(05)	2.380	23.98	
			$\pm.02$	$\pm .0003$	$\pm.005$	$\pm.02$										
(2 pole solutions)					18.965			168 - 203	+58 -	+72	37 - 53					
					$\pm.006$											
(2577) Litva	09, 10	4.0	(0.34)	2.81292	35.8723		(3.2)	253 - 348	-84 -	-68	158 - 178	2.3	0.08(09)	1.904	22.91	
			$\pm.02$	$\pm .00009$	$\pm .0008$											
(2754) Efimov	06, 08, 11	4.9	0.22	2.44967	14.77578		1.8	0 - 360	-90 -	-66	154 - 180	1.8^{g}	0.08(06)	2.228	5.71	
			$\pm.02$	$\pm .00002$	$\pm.00008$							_				
(3309) Brorfelde	05, 09, 10	4.7	0.26	2.5042	18.46444	18.45	2.0	116 - 154	-74 -	-64	168 - 180	2.1^{h}	0.08(10)	1.817	21.14	
			$\pm.02$	$\pm .0002$	$\pm.00003$	$\pm.02$										
(3868) Mendoza	09, 10	8.3	0.17	2.77089	12.1944		1.5							2.333	8.10	
				$\pm.02$	$\pm .00005$	$\pm .00008$										
(4029) Bridges	06, 07, 10	7.7	0.27	3.5750	16.31701		1.9	0 - 360	-90 -	-62	157 - 180	3.5	0.17~(06)	2.525	5.44	
			$\pm.03$	$\pm .0004$	$\pm.00004$											
(5477) Holmes	05, 07	2.9	0.39	2.9940	24.4036	(24.41)	2.5	320 - 332	+38 -	$+64^{i}$	$5 - 30^{i}$	2.0^{j}	0.05~(05)	1.917	22.55	
			$\pm.02$	$\pm .0002$	$\pm .0002$	$\pm.01$										
(5905) Johnson	05, 08	3.6	0.38	3.7823	21.75639		2.3	30 - 58	+60 -	+76	0 - 14			1.910	27.52	
			$\pm.02$	$\pm .0002$	$\pm .00006$											
(2 pole solutions)					21.79699			210 - 254	-56 -	-76	167 - 180					
,					$\pm.00009$											
(6084) Bascom ^{k}	05/06, 08	5.8	0.37	2.7453	43.51	(43.5)	3.7	267 - 378	-76 -	-56	127 - 169	2.9	0.15~(06)	2.313	23.01	
			$\pm.02$	$\pm .0002$	$\pm.02$	$\pm.1$,	,					
(6244) Okamoto	06, 09	4.4	0.25	2.8957	20.3105		2.2	0 - 360	+54 -	+90'	$0 - 33^{t}$			2.160	5.40	
			$\pm.02$	$\pm .0003$	$\pm .0002$											
(2 pole solutions)					20.3232			0 - 360	-90 -	-58^{m}	$151 - 180^m$					
					$\pm .0002$											
(6265) 1985 TW3	07, 10	5.2	(0.32)	2.7092	15.86^{n}		1.9							2.166	4.11	
			$\pm.02$	$\pm .0001$												
(9617) Grahamchapman	06, 08	2.8	(0.27)	2.28561	19.3817		2.1	0 - 360	+48 -	$+90^{p}$	$0 - 38^{p}$			2.224	6.14	
			$\pm.03$	$\pm .00006$	$\pm .0004$					~	~					
(2 pole solutions)					19.3915			0 - 360	-90 -	-50^{q}	$141 - 180^{q}$					
					$\pm .0004$											

Table 1: Parameters of 18 binary asteroids observed in more than one apparition

MBA multi-opposition data

MBA multi-opposition data

	Oppositions	P _{orb} (hours)	3₩ (s)	M after 5 years (degrees)
(1453) Fennia	07,09,11	23.00351	± 0.2	± 2
(1830) Pogson	07,08,10	24.24580	± 0.2	± 1
(2754) Efimov	06,08,11	14.77578	± 0.3	± 6
(3309) Brorfelde	05,09,10	18.46444	± 0.1	± 1
(4029) Bridges	06,07,10	16.31701	± 0.1	± 2

Three-period systems among MBA

- (1830) Pogson: 2.57 h; 3.26 h; 24.26 h (orb.)
- (2006) Polonskaya: 3.12 h; 6.66 h; 19.15 h (orb.)
- (2577) Litva: 2.81 h; 5.68 h; 35.87 h (orb.)

The second rotational component does not disappear during the secondary event \mathbb{K} it's not the rotation of the secondary \mathbb{K} indication of the third object in the system.

(Pravec et al., submited to Icarus)

Conclusions

Photometry of NEA and small MBA binaries

- requires:
 - distribution of observers among the world
 - sub-meter to meter-class telescopes
- gives:
 - unique (in many cases) orbital poles, periods, and other parameters
 - constraints on theories of binaries' origin and evolution
- does not give:
 - (accurate) densities!