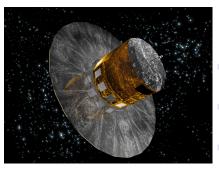

Towards an Automated Processing of Gaia Eclipsing Binaries

Christos Siopis

Institut d'Astronomie et d'Astrophysique Université Libre de Bruxelles Belgium

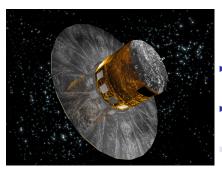
"Orbital Couples", October 10-12, Paris, France



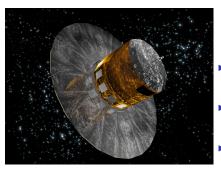
Gaia is an ESA Cornerstone astrometric mission

- Gaia is a scanning mission:
 - no pointing, no change in schedule
 30-200 photometric transits per object (~70 on average)
- Multicolor (G, RP, BP) photometry for $\sim 10^9$ objects down to ~ 20 mag
- Spectroscopy for ~ 10⁸ objects down to ~17 mag
- Pipeline expected to identify $\sim 10^8$ variable objects

< ロ > < 同 > < 三 > < 三 >

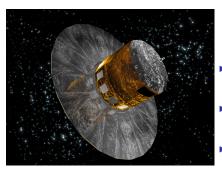

► ~ 10⁵ - 10⁶ of these objects expected to be eclipsing binaries

- Gaia is an ESA Cornerstone astrometric mission
- Gaia is a scanning mission:
 - no pointing, no change in schedule
 - 30-200 photometric transits per object (~70 on average)
 - Multicolor (G, RP, BP) photometry for $\sim 10^9$ objects down to ~ 20 mag
- ► Spectroscopy for ~ 10⁸ objects down to ~17 mag
- Pipeline expected to identify ~ 10⁸
 variable objects


• □ ▶ • • □ ▶ • • □ ▶

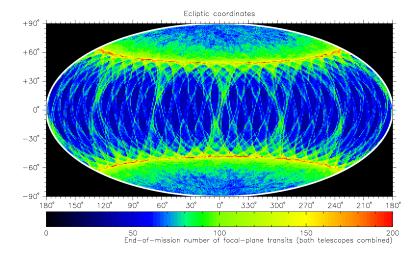
► ~ 10⁵ - 10⁶ of these objects expected to be eclipsing binaries

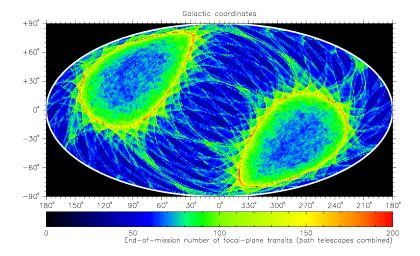
- Gaia is an ESA Cornerstone astrometric mission
 - Gaia is a scanning mission:
 - no pointing, no change in schedule
 - 30-200 photometric transits per object (~70 on average)
 - Multicolor (*G*, *RP*, *BP*) photometry for $\sim 10^9$ objects down to ~ 20 mag
- Spectroscopy for ~ 10⁸ objects down to ~17 mag
- Pipeline expected to identify ~ 10⁸
 variable objects


 ~ 10⁵ - 10⁶ of these objects expected to be eclipsing binaries

- Gaia is an ESA Cornerstone astrometric mission
- Gaia is a scanning mission:
 - no pointing, no change in schedule
 - 30-200 photometric transits per object (~70 on average)
- Multicolor (G, RP, BP) photometry for ~ 10⁹ objects down to ~20 mag
- Spectroscopy for ~ 10⁸ objects down to ~17 mag
- Pipeline expected to identify ~ 10⁸
 variable objects

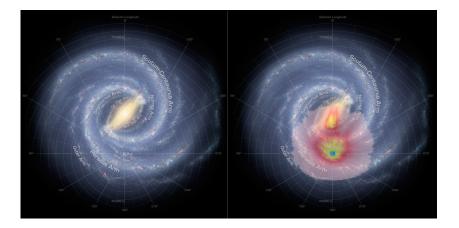
ヘロト 人間 ト イヨト イヨト


► $\sim 10^5 - 10^6$ of these objects expected to be eclipsing binaries

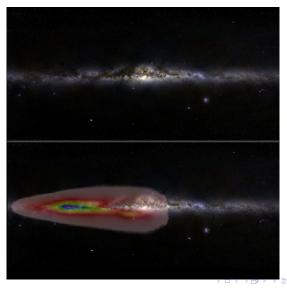

- Gaia is an ESA Cornerstone astrometric mission
- Gaia is a scanning mission:
 - no pointing, no change in schedule
 - 30-200 photometric transits per object (~70 on average)
- Multicolor (G, RP, BP) photometry for ~ 10⁹ objects down to ~20 mag
- Spectroscopy for ~ 10⁸ objects down to ~17 mag
- Pipeline expected to identify ~ 10⁸
 variable objects

► $\sim 10^5 - 10^6$ of these objects expected to be eclipsing binaries

Gaia sky coverage - Ecliptic coordinates



Gaia sky coverage - Galactic coordinates


< ロ > < 同 > < 三 > < 三 >

Gaia Catalog Coverage: View from Galactic Pole

何 ト イ ヨ ト イ ヨ

Gaia Catalog Coverage: View from Galactic Equator

Christos Siopis Towards an Automated Processing of Gaia Eclipsing Binaries

- Responsibility of CU4 Development Unit (DU) 436
 - Christos Siopis (DU436 manager)
 - Brandon Tingley (now at IAC)
 - Gilles Sadowski (physicist, computer scientist)
 - Associate members
- Why bother with eclipsing binaries?
 - Intrinsically interesting! (e.g., symbiotic systems)
 - One of few ways to determine stellar masses (as well as other stellar parameters)
 - Distance indicators

- Responsibility of CU4 Development Unit (DU) 436
 - Christos Siopis (DU436 manager)
 - Brandon Tingley (now at IAC)
 - Gilles Sadowski (physicist, computer scientist)
 - Associate members
- Why bother with eclipsing binaries?
 - ▶ Intrinsically interesting! (*e.g.*, symbiotic systems)
 - One of few ways to determine stellar masses (as well as other stellar parameters)
 - Distance indicators

Unique aspects of Gaia EB processing:

- Need for automated processing
- DPAC enforces rigid software environment
 - Respect software guidelines, interfaces, deadlines,
 - Software must be implemented in Java!
 - Software performance requirements

▶ 5 (6?)-year baseline + Gaia scanning law

- Bias towards short-period EBs (hours to days)
- Might simplify modeling, e.g., no need for long-term effects such as apsidal motion (?)

Important light/velocity curve phases often not sampled!

- A consequence of the Gaia scanning law
- Photometry: 30-200 transits per object (~70 mean)
- Spectroscopy: 20-120 transits per object (~30 mean)
- Non-uniform (albeit quisi-regular) sampling

ヘロト 人間 ト イヨト イヨト

- Unique aspects of Gaia EB processing:
 - Need for automated processing
 - DPAC enforces rigid software environment
 - Respect software guidelines, interfaces, deadlines,
 - Software must be implemented in Java!
 - Software performance requirements
 - ▶ 5 (6?)-year baseline + Gaia scanning law
 - Bias towards short-period EBs (hours to days)
 - Might simplify modeling, e.g., no need for long-term effects such as apsidal motion (?)

Important light/velocity curve phases often not sampled!

- A consequence of the Gaia scanning law
- Photometry: 30-200 transits per object (~70 mean)
- Spectroscopy: 20-120 transits per object (~30 mean)
- Non-uniform (albeit quisi-regular) sampling

ヘロト 人間 ト イヨト イヨト

- Unique aspects of Gaia EB processing:
 - Need for automated processing
 - DPAC enforces rigid software environment
 - Respect software guidelines, interfaces, deadlines,
 - Software must be implemented in Java!
 - Software performance requirements
 - ▶ 5 (6?)-year baseline + Gaia scanning law
 - Bias towards short-period EBs (hours to days)
 - Might simplify modeling, e.g., no need for long-term effects such as apsidal motion (?)

Important light/velocity curve phases often not sampled!

- A consequence of the Gaia scanning law
- Photometry: 30-200 transits per object (~70 mean)
- Spectroscopy: 20-120 transits per object (~30 mean)
- Non-uniform (albeit quisi-regular) sampling

ヘロト 人間 ト イヨト イヨト

- Unique aspects of Gaia EB processing:
 - Need for automated processing
 - DPAC enforces rigid software environment
 - Respect software guidelines, interfaces, deadlines,
 - Software must be implemented in Java!
 - Software performance requirements
 - ▶ 5 (6?)-year baseline + Gaia scanning law
 - Bias towards short-period EBs (hours to days)
 - Might simplify modeling, e.g., no need for long-term effects such as apsidal motion (?)

Important light/velocity curve phases often not sampled!

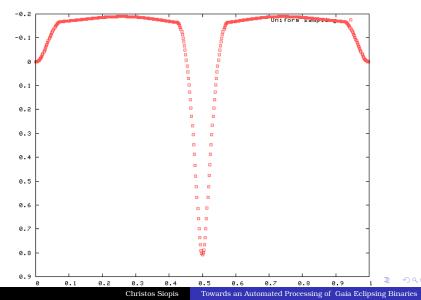
- A consequence of the Gaia scanning law
- Photometry: 30-200 transits per object (~70 mean)
- Spectroscopy: 20-120 transits per object (~30 mean)
- Non-uniform (albeit quisi-regular) sampling

- Unique aspects of Gaia EB processing:
 - Need for automated processing
 - DPAC enforces rigid software environment
 - Respect software guidelines, interfaces, deadlines,
 - Software must be implemented in Java!
 - Software performance requirements
 - ▶ 5 (6?)-year baseline + Gaia scanning law
 - Bias towards short-period EBs (hours to days)
 - Might simplify modeling, e.g., no need for long-term effects such as apsidal motion (?)
 - Important light/velocity curve phases often not sampled!
 - A consequence of the Gaia scanning law
 - Photometry: 30-200 transits per object (~70 mean)
 - Spectroscopy: 20-120 transits per object (~30 mean)
 - Non-uniform (albeit quisi-regular) sampling

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

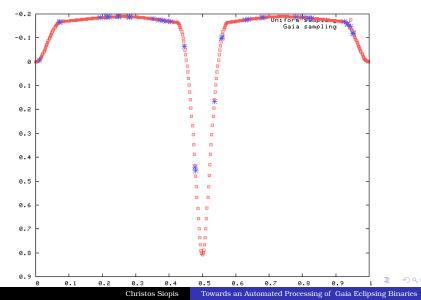
- Unique aspects of Gaia EB processing:
 - Need for automated processing
 - DPAC enforces rigid software environment
 - Respect software guidelines, interfaces, deadlines,
 - Software must be implemented in Java!
 - Software performance requirements
 - ▶ 5 (6?)-year baseline + Gaia scanning law
 - Bias towards short-period EBs (hours to days)
 - Might simplify modeling, e.g., no need for long-term effects such as apsidal motion (?)
 - Important light/velocity curve phases often not sampled!
 - A consequence of the Gaia scanning law
 - Photometry: 30-200 transits per object (~70 mean)
 - Spectroscopy: 20-120 transits per object (~30 mean)
 - Non-uniform (albeit quisi-regular) sampling

ヘロト 人間 ト 人 ヨ ト 人 ヨ トー

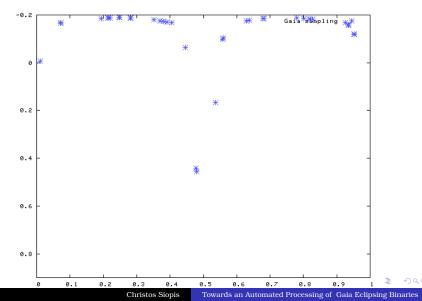

- Unique aspects of Gaia EB processing:
 - Need for automated processing
 - DPAC enforces rigid software environment
 - Respect software guidelines, interfaces, deadlines,
 - Software must be implemented in Java!
 - Software performance requirements
 - ▶ 5 (6?)-year baseline + Gaia scanning law
 - Bias towards short-period EBs (hours to days)
 - Might simplify modeling, *e.g.*, no need for long-term effects such as apsidal motion (?)
 - Important light/velocity curve phases often not sampled!
 - A consequence of the Gaia scanning law
 - ▶ Photometry: 30-200 transits per object (~70 mean)
 - Spectroscopy: 20-120 transits per object (~30 mean)
 - Non-uniform (albeit quisi-regular) sampling

- Unique aspects of Gaia EB processing:
 - Need for automated processing
 - DPAC enforces rigid software environment
 - Respect software guidelines, interfaces, deadlines,
 - Software must be implemented in Java!
 - Software performance requirements
 - ▶ 5 (6?)-year baseline + Gaia scanning law
 - Bias towards short-period EBs (hours to days)
 - Might simplify modeling, *e.g.*, no need for long-term effects such as apsidal motion (?)
 - Important light/velocity curve phases often not sampled!
 - A consequence of the Gaia scanning law
 - Photometry: 30-200 transits per object (~70 mean)
 - Spectroscopy: 20-120 transits per object (~30 mean)
 - Non-uniform (albeit quisi-regular) sampling

- Unique aspects of Gaia EB processing:
 - Need for automated processing
 - DPAC enforces rigid software environment
 - Respect software guidelines, interfaces, deadlines,
 - Software must be implemented in Java!
 - Software performance requirements
 - ▶ 5 (6?)-year baseline + Gaia scanning law
 - Bias towards short-period EBs (hours to days)
 - Might simplify modeling, *e.g.*, no need for long-term effects such as apsidal motion (?)
 - Important light/velocity curve phases often not sampled!
 - A consequence of the Gaia scanning law
 - ▶ Photometry: 30-200 transits per object (~70 mean)
 - ▶ Spectroscopy: 20-120 transits per object (~30 mean)
 - Non-uniform (albeit quisi-regular) sampling


Peculiarities Estimation of Physical Parameters Remaining Work

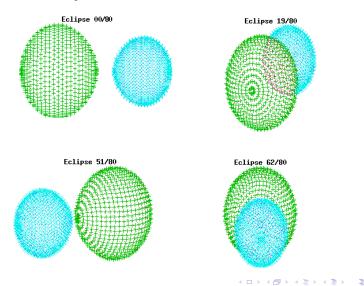
EB and Gaia Scanning Law


Peculiarities Estimation of Physical Parameters Remaining Work

EB and Gaia Scanning Law

Peculiarities Estimation of Physical Parameters Remaining Work

EB and Gaia Scanning Law


- ► EB Model Generator: Given a set of epochs {t_i} and physical parameters **p**, generate EB physical model M(t_i; **p**)
 - Full Roche-lobe modeling:
 - detached/semi-detached/contact geometries
 - gravity brightening
 - limb darkening
 - mutual irradiation
 - asynchronous rotation
 - third light
 - spots
 - ▶ ...

< D > < (2) > < (2) > < (2) >

- ► EB Model Generator: Given a set of epochs {t_i} and physical parameters **p**, generate EB physical model M(t_i; **p**)
 - Full Roche-lobe modeling:
 - detached/semi-detached/contact geometries
 - gravity brightening
 - limb darkening
 - mutual irradiation
 - asynchronous rotation
 - third light
 - spots
 - ▶ ...

Peculiarities Estimation of Physical Parameters Remaining Work

Estimation of Physical Parameters

- ► EB Model Generator: Given a set of epochs {*t_i*} and physical parameters **p**, generate EB physical model *M*(*t_i*; **p**)
 - Full Roche-lobe modeling
- Fitting procedure: Find **p** such that *M*(*t_i*; **p**) best fits observables *O*(*t_i*) (epoch photometry/spectroscopy) in a χ² sense:

 $\label{eq:Find_prod} \text{Find} \quad \textbf{p}: \quad \min \, ||\mathcal{M}(t_i; \textbf{p}) - \mathcal{O}(t_i)||$

Problem: Global minimum is hard and time-consuming to find!

ヘロア 人間 アメヨア ヘヨアー

- ► EB Model Generator: Given a set of epochs {*t_i*} and physical parameters **p**, generate EB physical model *M*(*t_i*; **p**)
 - Full Roche-lobe modeling
- ▶ Fitting procedure: Find **p** such that M(t_i; **p**) best fits observables O(t_i) (epoch photometry/spectroscopy) in a χ² sense:

Find
$$\mathbf{p}$$
: min $||\mathcal{M}(t_i; \mathbf{p}) - \mathcal{O}(t_i)||$

Problem: Global minimum is hard and time-consuming to find!

• □ ▶ • @ ▶ • E ▶ • E ▶

Following a two-step procedure:

- 1. Use "global" optimization to come close to global minimum
 - E.g., use database of precalculated light curves
- 2. Use "local" optimization to home in on exact value

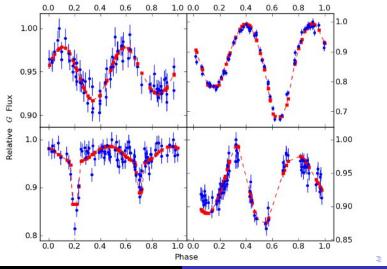
• □ ▶ • • □ ▶ • • □ ▶

Following a two-step procedure:

- 1. Use "global" optimization to come close to global minimum
 - E.g., use database of precalculated light curves
- 2. Use "local" optimization to home in on exact value

• □ ▶ • • □ ▶ • • □ ▶

- Following a two-step procedure:
 - 1. Use "global" optimization to come close to global minimum
 - *E.g.*, use database of precalculated light curves
 - 2. Use "local" optimization to home in on exact value


• □ ▶ • • □ ▶ • • □ ▶

- Following a two-step procedure:
 - 1. Use "global" optimization to come close to global minimum
 - *E.g.*, use database of precalculated light curves
 - 2. Use "local" optimization to home in on exact value

・ロト ・四ト ・ヨト ・ヨト

Peculiarities Estimation of Physical Parameters Remaining Work

Estimation of Physical Parameters

Christos Siopis

Towards an Automated Processing of Gaia Eclipsing Binaries

Simulator: Validation against, e.g., Wilson-Devinney code

- Optimizer: Still lots of work on the fitting procedure!
- ▶ Testing using EB light-curve data sets from the literature
- Error estimation
- Provide useful output to EB community: How to best exploit a large number of EBs with
 - large gaps in phase coverage in both photometry and spectroscopy, and
 - variable quality of photometric & spectroscopic data?
- Seeking feedback from EB community!
 - GAP: Gaia Archive Preject \rightarrow CU9

- Simulator: Validation against, e.g., Wilson-Devinney code
- Optimizer: Still lots of work on the fitting procedure!
- ▶ Testing using EB light-curve data sets from the literature
- Error estimation
- Provide useful output to EB community: How to best exploit a large number of EBs with
 - large gaps in phase coverage in both photometry and spectroscopy, and
 - variable quality of photometric & spectroscopic data?
- Seeking feedback from EB community!
 - GAP: Gaia Archive Preject \rightarrow CU9

- Simulator: Validation against, e.g., Wilson-Devinney code
- Optimizer: Still lots of work on the fitting procedure!
- ► Testing using EB light-curve data sets from the literature
- Error estimation
- Provide useful output to EB community: How to best exploit a large number of EBs with
 - large gaps in phase coverage in both photometry and spectroscopy, and
 - variable quality of photometric & spectroscopic data?
- Seeking feedback from EB community!
 - GAP: Gaia Archive Preject \rightarrow CU9

• □ ▶ • @ ▶ • E ▶ • E ▶

- Simulator: Validation against, e.g., Wilson-Devinney code
- Optimizer: Still lots of work on the fitting procedure!
- ► Testing using EB light-curve data sets from the literature
- Error estimation
- Provide useful output to EB community: How to best exploit a large number of EBs with
 - large gaps in phase coverage in both photometry and spectroscopy, and
 - variable quality of photometric & spectroscopic data?
- Seeking feedback from EB community!
 - GAP: Gaia Archive Preject \longrightarrow CU9

• □ ▶ • @ ▶ • E ▶ • E ▶

- Simulator: Validation against, e.g., Wilson-Devinney code
- Optimizer: Still lots of work on the fitting procedure!
- Testing using EB light-curve data sets from the literature
- Error estimation
- Provide useful output to EB community: How to best exploit a large number of EBs with
 - large gaps in phase coverage in both photometry and spectroscopy, and
 - variable quality of photometric & spectroscopic data?
- Seeking feedback from EB community!

• GAP: Gaia Archive Preject \rightarrow CU9

ヘロト 人間 ト くま ト くま トー ほ

- Simulator: Validation against, e.g., Wilson-Devinney code
- Optimizer: Still lots of work on the fitting procedure!
- Testing using EB light-curve data sets from the literature
- Error estimation
- Provide useful output to EB community: How to best exploit a large number of EBs with
 - large gaps in phase coverage in both photometry and spectroscopy, and
 - variable quality of photometric & spectroscopic data?
- Seeking feedback from EB community!

• GAP: Gaia Archive Preject \longrightarrow CU9

- Simulator: Validation against, e.g., Wilson-Devinney code
- Optimizer: Still lots of work on the fitting procedure!
- Testing using EB light-curve data sets from the literature
- Error estimation
- Provide useful output to EB community: How to best exploit a large number of EBs with
 - large gaps in phase coverage in both photometry and spectroscopy, and
 - variable quality of photometric & spectroscopic data?
- Seeking feedback from EB community!
 - ▶ GAP: Gaia Archive Preject \longrightarrow CU9