On-board data handling for DMS

The instruments

Astrometric focal plane

ASM1-2
$2600 \times 1966,1.9 \mathrm{~s}$

BBP1-5
$2600 \times 1966,1.9 \mathrm{~s}$
<-- AF1-11: 4500x1966 px, 3.3s -->

Transverse motion
~60 pixels maximum
(exagerated here!)

Sky Astrometric Field
Mapper

Broad Band
Photometry

Spectrometer and MBP/RVS focal plane

Spectro field

- Confirmation and redundancy
- For spectro sky mapper
- Two MBP fields
- $1+15$ CCDs $=1+11$ filters TBC

Sampling

Sampling and patches

- Scientific Requirements

- Highest precision along-scan
- Highest signal/noise: smallest read-out noise: electronic binning
- Enough flux per object for on-ground reconstruction
- Technical Constraints
- CPU: limited instantaneous number of objects
- Telemetry: small number of patches, size of patches
- Number of samples AC fixed by the max. density
- 3.10^{6} in astro
- $\sim 10^{5}$ in MBP, RVSM
- Sampling design now steady

Sampling in the astrometric field

Sampling in Astro and MBP

Copenhagen University Observatory - E. Hoeg - 21 October 2002

$\begin{aligned} & \text { C Sampling in MBP } \\ & M B S M=\text { Medium-Band Sky Mapper } \\ & M B P=\text { Medium-Band } \text { Photometer } \end{aligned}$	
	Calibration with 3 windows WM7, 5,3 for $\mathrm{G}=0-20$ mag: WM7: Read and transmit 8*7 samp WM3, WM5 for calibration, see CUO-91 Magnitude limits are TBC
	Imaging around detected stars Detection in G-band and multi-colour photometry
CUO - 21 Oct. 2002	

Bright stars (E.Høg)

The space between
windows is determined by ASM1

No saturated samples
are downloaded

GAIA-CUO-100,
AAEB-FACB-01
GAIA-BCN-JP-001
CCD study uses gates
and 1×1 samples

The scanning law

Scanning directions

- Far from being uniform.
- Render detection of some couples difficult

Peaks and valleys

- Telemetry by Yves Viala
- Using GSC II
- Astro and MBP to be extrapolated to $G=20$
- Data peaks are due to great circles along the galactic plane
- Between two data peaks, stars fainter than 20 could be sent (second priority)

Total number of stars observed by the GAIA instruments during the mission

RVS - Magnitude limit $=18$ - Starcount : (GAIA-CTSR and GSC2.2-F band)

Observing strategy

Flowchart
in
astro

Constraints

- Scientific Requirements
- Highest precision along-scan
- Highest signal/noise : smallest read-out noise : electronic binning
- Enough flux per object for on-ground reconstruction (two close objects)
- Technical Constraints
- CPU: limited instantaneous number of objects
- Telemetry: small number of patches, size of patches
- Number of samples $A C$ fixed by the max. density
- 3.10^{6} in astro
- $\sim 10^{5}$ in MBP, TBC
- DMS need to get components into patches
- Companions should be detected to be in AF1 (otherwise seconclary not observed)
- Companions can further be detected in AF1
- Companions should be correctly centred
- Particles (TBC)
- Cosmic rays
- Solar protons
- For 4% time at sunspot maximum, rate could be much larger than star rate
- Two levels of rejection:
- Shape
- AF1 confirmation
- Isolated particles give less constraints than those superimposed on stars (fake DMS)

Window allocation

- Confirmation

- Detection algorithm is run on the AF1 window.
- Cross-matching based on centroid position
- If cross-matching fails: false detection
- A larger AF1 window for NEOs when low density?
- Scan rate and prediction of positions
- If one object in ASM and one in AF1 and object identified as star, then delta position is added to a list for scan rate computation
- If delta position too large and object elongated and low density, then followed as NEO; else the scan rate is used to predict the position of object
- Allocation of windows
- It may happen that the edge of CCD is reached, then download only AF1-5
- It may happen that ASM1 and ASM2 objects overlap so the allocation of windows needs to take this into account

Placement and selection

- Placement of windows
- Maximum number of samples allowed per row
- None of its samples overlap with other windows
- May be overlapping in AF1
- So that a shift (no more of 2 pixels) is allowed (for DMS)
- Selection
- First-read first-kept basis
- When bright star can't be observed, last faint windows may be suppressed
- Except if faint star is a companion to the bright star in which case both should be obtained

Patches for double stars (S. Söderhjelm)

- Proposal for Gaia 2 design
- Patch sizes

		single
- $G<12$	$(3+3) 16 \times 4$	double
$-12<G<17$	16×14	16×14
$-G>17$	6×10	16×14

- Adopted for tracking
- G<12: it is looked into the 6 spike patches and if there is a companion inside a patch: if priority to bright stars is assumed, the bright star patch is kept; otherwise the patch of the first to arrive is kept.
- $12<6<17$: if along-scan and across-scan separation are $<=14$ pixels, one patch is taken, centered on the geocentre else two patches are taken, with the single star patch size
- $G>17$: if along-scan and across-scan separation are $<=8$ pixels, one patch centered on the geocentre else two small patches are taken

Proposal for DMS patches (E. Høg)

- Window allocation for double stars
- First in, first kept
- Complexity
- Adaptation to multiple stars
- Dense areas in astro
- Galactic plane in MBP/spectro
- Increase of telemetry

DMS treatment

- Which model is the best?
- Tests have to be done for multiples

- Observing strategy for special objects
- one (or two) supplementary windows may be allocated
- allocation of supplementary windows may also occur after the AF1 (better resolution, better S/N, 12×6 samples)
- Window placement for multiple objects
- Barycenter in ASM compared to AF1 barycenter
- If no object is found in the AF1 window, ASM detection is considered as false
- If less objects in AF1, ASM is considered as containing cosmic ray and AF1 position is adopted
- If more objects in AF1 and total flux larger, the ASM is considered as reference (cosmic ray)
- Cosmic rays perturb all this

MBP and RVS

MBSM/RVSM

- In MBP
- Confirmation using the flux sum of 15 MBP?
- Strategy in RVSM
- Detections then cross-correlations,
- Up to a density of 100000 stars/deg2
- NEOs recognised by their velocity
- A lot of DMS even in non-crowded fields

RVS full CCDs

- Design now consolidating: baseline $R=11500,3$ CCDs, tilt mecanism
- When crowding is such high that the RVS CCD should be entirely downloaded:

- Galactic coordinates, limiting magnitude=17, $\mathrm{R}=11500$, row/spectrum=2
- Means a *lot* of superimposed spectra
- Dedicatred reduction for DMS

Status

- Requirement document for on-board processing to be issued mid-april
- Implementation done 6 months ago
- Currently uses Staffan's patches
- Implements part of these requirements only
- Needs coding with better standards
- Recent effort has been put on detection
- Next 6 months devoted to implementation of these requirements
- Needs for tests, in particular multiple stars
- Perturbation by level of particles
- Complexity in MBSM/RVSM

