On-board detection, selection and confirmation algorithms

Observatoire de Paris-Meudon S. Mignot, F. Arenou, C. Babusiaux

Overview

16/12/02

Inputs to PDHE

- Architecture of the processing
 - Flowchart
 - Summary of outputs

Algorithmic principles

- Main drivers
- Detection, selection and confirmation

Development status

• Features and tests

Code stability and possible evolutions

- Architecture
- Methods
- Implementation

The input

Ressources

- Detection (2 algorithms)
- Preliminary selection/tracking of objects
- Tests on representative data
- Reading CCD, organising, packetting, compressing data is not included

Several needs:

- to take into account the Gaia2 design (e.g.saturation)
- to test/implement new parts
- to have an "object-oriented" software
 - Maintenance
 - to further use an UML model
- A large effort (~13manxmonth) for coding since april

Rose (UML) Model

16/12/02

Documents

Requirements

- Input to PDHE contract, 14-DEC-02
- Gaia_Detect documentation, 29-AUG-02
- SWA users guide
- Flowcharts of the SWA and GD detection algorithms, 29-OCT-02
- A document summarizing scientific requirements to be done soon

Proposals

- UML model
- First implementation of the selection algorithm, 25-NOV-02
- Technical characteristics and design issues for the GAIA astrometric focal plane

- OBD-CoCo-03
- OBD-FC-01
- SWA_guide.ps
- OBD_SM_02
- GAIA-CUO-117

- <u>http://www.ast.cam.ac.uk/~carine/GAIA/SIM</u> <u>U/UML_MODEL/model.html</u>
- OBD-HC-01
- UB_GDAA5_TN_001_V30.doc

\boxtimes 8 X \otimes Ø> 16/12/02

Architecture of the processing

Estec PDHS: algorithms

Flowchart

Output summary

Inputs	Task	Outputs
ASM1 and ASM2 samples (all CCD)	Detection	 (c1) centroids (f1) flux (t1) types (e1) elongation backgrounds cosmic rays (rejected)
(c1) centroids (ASM1 & ASM2) (t1) types scan rate	Selection 1	(w1) windows (position & type, AF1) list of not selected
(w1) windowed samples backgrounds (c1) centroids (t1) types (f1) flux scan rate	Confirmation	(f2) flux (c2) centroids (e2) elongation (t2) types list of not confirmed
 (c1) centroids (c2) centroids (e1) elongation (e2) elongation (t2) types scan rate list of not confirmed 	Selection 2	(w2) windows (position & type, AF2–11 & BBF list of not observed
(c1) centroids (c2) centroids (t2) types	Scan rate computation	scan rate
ASM1 and ASM2 samples (all CCD) (c2) centroids (w2) AF1 windowed samples	ASM & AF1 windowing	(w3) windowed data (ASMs) (w4) windowed data (AF1)
(w1) windowed samples (G<20) (w4) windowed samples (G<20) (w3) windowed samples (G<20) (c2) centroids (f1) flux backgrounds	Packetisation Compression (high priority)	high priority packets
(w1) windowed samples (G _ 20) (w4) windowed samples (G _ 20) (w3) windowed samples (G _ 20)	Packetisation Compression (low priority)	low priority packets

Algorithmic principles

Algorithmic drivers

Simplicity:

- Strong real-time constraints (read-out each 0.735 ms)
- Limited computing power

Efficiency:

- Telemetry & computing resources (false detections)
- Statistical study of the Galaxy (completeness & homogeneity)
- Completeness of telemetered information (ground reduction)

Robustness:

- Multiplicity of instrument modes
- Instrument deterioration
- Diversity of observed objects & unpredicted ones

٢

Detection: overview

1. Buffering

٢

- 2. Denoising (filtering)
- 3. Source detection

or

Background estimation

- 4. Data collection ┥
- 5. Measurements
- 6. Classification

Buffering

SWA

Local approach

• Per column basis: •Denoising -> 3 •4-connectivity -> 3 •Background estimate ->21

GD

Region approach

• Per column "pack" basis: •Background estimate -> 32

Denoising (filtering)

SWA

Noise

- 💿 👘 Photon noise
- Read-out noise

Centered gaussian model

\Rightarrow convolution filtering with kernel:

_	1	2	1	
	2	4	2	
	1	2	1	

Source detection

SWA

• Maximum-based:

 $1 \max \Leftrightarrow 1 \text{ object}$

•8-connectivity • χ^2 test for relevance

GD

Background estimation •Model: smooth •Trimmed median •On a region-basis (32x32 samples) •2d linear interpolation

Source detection SNR threshold-based Background substraction

16/12/02

Data collection

SWA

Background estimation •Trimmed median between PSF's spikes

Data collection • Template-based:

					H					

• Object SNR filtering

GD

- Connected-component based:
 4-connectivity
- Object "SNR" filtering
- Border effects handling • Restore split objects

Measurements

SWA

• Centroid

Barycentre on flux-adaptive sized neighbourhood (3x3 or 5x5)Refined with an offset for PSF assymetry

• Flux

•Sum of sample values on 3x3 neighborhood + correction •Refined to account for PSF extension beyond the neighborhood

Background

•Previous estimate

GD

• Centroid

Barycentre of connected-component's samples
 Refined with LSF-fitting (AL)

• Flux

Sum of samples
Refined using a spline-interpolated error look-up table

Background

•Mean value of connected-component samples' previously interpolated background estimates

• Type

First-order moments for shape parameters (orientation & excentricity)
Use flux, background, χ² test

GD: mutliple objects

Ŕ $\times)$ Ø

- Separate sub-objects 2 by 2 recursively
- Optimal threshold search

Selection/tracking: why and how

After detection:

16/12/02

 \approx

- Which objects to observe
- What to download

Constraints on resources

- How (centering, size, overlapping, ...) in each CCD (tracking=observing strategy)
- Limited number of samples per row
- No sample overlapping
- Storage (possible downlink failure)
- Telemetry (some great circles with a large number of objects)

For each object

- Some priority to bright objects
- Not implemented for the moment

Implementation

Saturated stars

It is looked into the 6 spike patches and if there is a companion inside a patch: priority to bright stars is assumed, the bright star patch is kept; otherwise the patch of the first to arrive is kept (optional).

Double stars

16/12/02

- A window centered on geocentre or two windows
- Optimization of the patch selection
 - Allowing up to 1/3 patch shift to cope with DMS/crowding
 - Allowing patch (but not sample) overlapping
- Based on a configuration file

Patches for double stars (TBC)

Patch sizes

•	single	double
■ <i>G</i> < 12	(3+3) 16x2	-
■ 12< <i>G</i> <17	16×12	16×12
■ <i>G</i> >17	6×10	16x12

Selection

- 12<G<16: if along-scan and across-scan separation are <= 12 pixels, one patch is taken, centered on the geocentre else two patches are taken, with the large single star patch size
- G > 16: if along-scan and across-scan separation are <= 8 pixels, one patch centered on the geocentre else two small patches are taken

Confirmation: overview

38

16/12/02

"GD-based" simplified detection

- Predict sample-wise background in AF1 from ASM data (different exposures)
- Source detection: SNR threshold (unfiltered data)
- Data collection: connected-component based (4 connectivity)
- Measurements: centroid, flux (no bright star refinement) and type

Cross-matching

- 1 <-> 1: threshold on distance between centroids (NEO-oriented threshold)
- ? <-> 0: not confirmed
- > 1 detections during confirmation: cross-match each with the detection(s)
 - No additional detections
 - Thresholds on centroids' distance and flux difference

Development status

Demonstration

Data observed by HST WFPC2

- Real Baade window data
- Gives ~4 million stars/square degrees

GIBIS simulation

- Gaia 2 Astrium design in ASM/AF1
- 32" corresponds to ~0.5 s scan time
- Image duplicated across-scan to get 1966 px
- Sampling 2x2, exposure time 1.915 s, RON=8.7e
- Constant background 22.5 mag.arcsec-2

Input to PDHE

- A program is given to duplicate the image along-scan
- Or it can be done on the fly

Features (1)

Nominal case:

Supported

- Stellar content: most populated magnitude classes (G = 15...23 mag)
- Expected noise budget: photon noise and read-out noise (expecting pre-processed CCD data)
- Targeted towards the high densities stringent requirements

Missing

 Objects:extended objects (galaxies, globular cluster etc...), saturated objects (G = 2..15 mag), fast displacement (NEOs etc...)

⇒ Data set: Astro: Baade's window (3. 10⁶ */deg²) + Spectro: /=74 Astro+Spectro: average case (25 000 */deg²)

Baade's window

Average case

Features (2)

Instrument behavior:

Missing

 Modes: beginning of mission, recovery from attitude disruption, lagging behind, instrument degradation, low density attitude control

Estec PDHS: algorithms

- Combination of FOV (implemented but not tested)
- CCD real output data (cosmic rays,hot pixels,CTE,etc)
- Calibration (on-board PSF determination or uploaded from ground)

redundancy,

26

Tests

ø

 $(\times$

 $\otimes_{\otimes \mathfrak{I}}$

Data flow variability:

• Expected cosmic rays effects:

 \Rightarrow Possibly an issue

• Undetected stars & false detections (without cosmic rays)

2	Completeness	(ASM):					
	Baade:	GD:	100%	up to	G = 18.4	((84.9% for G < 20
		SWA:	100%	-	G = 18.3		(86.9% for G < 20
	average:	GD:	100%		G = 20		
	<u> </u>	SWA:	100%		G = 20		
٢	Completeness	(spectro):					
	average:	GD:	90.4%		G = 20		
		SWA:	95.8%		G = 20		
2	GD/SWA comp	parison:	SWA: comp	lete at low m	nagnitudes		

GD: improved detection rates at high magnitudes

Code stability & possible evolutions

Methods

16/12/02

Short term:

- On-going tests: learning from GD & SWA to build a synthesis
- Stable:
 - Maximum search with additional handling of extended maxima: improves completeness
 - Region-growing algorithms: evolve towards a one-pass object detection and data collection
 - ⇒ Requires efficient traversing of the CCD data set for simple element-wise computations
- Planned:
 - Improvements for double stars
 - Predictive processing: slowly varying image parameters
 - Paralleled centroid determination (relying on scalar products)

Prospective

- confirmation strategy: cross-matching, MBP
- Rewriting of the selection function: selection criteria (priority to magnitude), windowing (position for bright stars to be adapted to design, patches for extended objects, shifted position of windows, short windows in AF11/BBP, odd number of patches in MBP)
- Real false detection-oriented selection: explicit decision tree
- Cosmic-ray rejection at the detection stage
- Specific objects' handling (galaxies, saturated etc...)

Example: double stars

- A large fraction of stars are double stars
- The sampling has began to be studied
- The strategy is not completely fixed
- What is implemented is one patch centered between components
- Alternative strategy is to take supplementary patches
 - Increase telemetry rate
 - More complicated reduction
 - May be better for astrometry

Architecture

16/12/02

Instrument modes & optical inhomogeneity in the focal planes

- Real-time and on-board algorithmic constraints conformance
- Validation of star-based attitude control in low stellar densities
- Overall distribution of observations in the two FOV during the mission
- Post-processing: numerical binning, RVS CCD summation

Implementation adjustments

- Exact CCD output data type
- Handling of CCD rows independence
- Combination of the FOV and effects of AC velocities
- Bug fixes (bug reports very welcome !)

Identified Bugs

- Patches for extended objects
 - same as stars assumed
- Patches for bright objects
 - based on the detected magnitude, but with limits based on the Gaia-1 design
- Bad sample position
- Bad confirmation rate in RVS
- Memory leaks in all algorithms
- Star leaks in selection...

Example : bright-star bug

No ASMO in the new design Saturation, ghosts, CTE complicate 1% of stars but the best astrometry Improving the detection/selection depends on realistic simulations

Conclusion

Several missing features

Pending questions and issues

- Adaptive processing (object type, attitude according to stellar density)?
- Telemetry issue
- On-board reduction for high priority objects not downloaded, not observed ?

Yet : main ideas / building blocks gradually falling into place representative of main requirements

Hope for efficient interaction & feedback from the industrial feasibility study.

People in relation to this activity

16/12/02

People

- F. Arenou
- C. Babusiaux (simulation/detection)
- E. Hoeg (sampling)
- D. Katz (spectro instrument)
- S. Mignot (detection/selection)
- J. Portell (focal plane)

Emai

Phon

Fax:

Contact

F. Arenou:

l:	Frederic.Arenou@c
e:	(33/0) 1 45 07 78 49
	(33/0) 1 45 07 78 78

bspm.fr