

The instruments

Scanning law

$\begin{array}{lc}\text { Spin axis } & 50^{\circ} \text { to Sun } \\ \text { Scan rate: } & 60 \text { arcsec/s } \\ \text { Spin period: } & 6 \text { hours }\end{array}$

Scanning law

100 days

The stellar density in equatorial coordinates

Astrometric focal plane

Spectrometer and MBP/RVS focal plane

Basic unchanged principles

- Two viewing directions with 106° basic angle
- Separate spectroscopic telescope including the medium-band photometer and the radial velocity spectrometer
- The on-board detection (except for bright stars)
- The limiting magnitude $G=20$
- The astrometric accuracies as a function of magnitude
- Satellite at the L2 position, coverage ~ 8 hours / 24
- Telemetry rate at about 1 Mbps on average

What has changed

- The fairing diameter reduced from 4.2 m to 3.8 m for a Soyuz launch
- The revised optical design has a shorter focal length and an intermediate focus
- The lower distortion allows larger CCD chips, smaller number of CCDs
- A longer integration time per chip (from 0.9 s to 3.3 s)
- Both viewing directions are now superimposed on a single focal plane
- The two fields having different cross-scan motions
- Some complications in terms of on-board object detection and windowing
- A slower spin rate of $60 \mathrm{arcsec} / \mathrm{s}$ (reduced from $120 \mathrm{arcsec} / \mathrm{s}$)
- increasing the elementary integration time and reducing the telemetry further
- with some impact on the regularity of sky sampling
- Smaller sun aspect angle of 50° (reduced from 55°) due to the smaller sun-shield
- Degrading slightly the decoupling of the astrometric parameters.

GENERAL PARAMETERS		
	Former Design	New Design
Observing time L	$\mathrm{L}=4$ years	$\mathrm{L}=5$ years
Scan rate \square	$120 \mathrm{arcsec} / \mathrm{s}$	$60 \mathrm{arcsec} / \mathrm{s}$
Precession period \square_{p}	70 days	70 days
Rotation axis	55° from sun direction	$50^{\circ}+/-0.1^{\circ}$ from sun direction
Star population $\mathrm{V}<20$ Average value «Worst case »	$\begin{gathered} \mathrm{N}_{\mathrm{s}}=25000 \\ \text { stars/deg }{ }^{2} \\ 3000000 \text { stars }^{2} \mathrm{deg}^{2} \end{gathered}$	$\begin{aligned} & \mathrm{N}_{\mathrm{s}}=25000 \text { stars } / \mathrm{deg}^{2} \\ & 3000000 \text { stars } \mathrm{deg}^{2} \end{aligned}$
Total number of observed stars	~ 1 billion	~ 1 billion

PARAMETERS OF THE ASTROMETRIC INSTRUMENT

	Previous Design	New Design
Basic angle	106 deg	106 deg
Entrance pupil	$1.7 \mathrm{~m} \times 0.7 \mathrm{~m}$	$1.4 \mathrm{~m} \times 0.5 \mathrm{~m}$
Focal length	50 m	46.67 m
Field of view (effective)	0.32 deg ${ }^{2}$	$>0.4 \mathrm{deg}^{2}$
FOV height	0.66 deg across	0.66 deg across scan
Spot sampling	6 pixels	6 pixels
Pixel size	$9 \mu \mathrm{~m} \times 27 \mu \mathrm{~m}$	$10 \mu \mathrm{~m} \times 30 \mu \mathrm{~m}$
CCD active area	$29 \mathrm{~mm} \times 58 \mathrm{~mm}$	$45 \mathrm{~mm} \times 59 \mathrm{~mm}$
Number of CCDs in Astro fields	$2 \times 17 \times 10=340$	$11 \times 10=110$
Sky mapper CCDs	$2 \times 70=140$	2 strips $\times 10$ CCDs $=20$
Broad Band Photometry	$2 \times 4 \times 10=80$	$5 \times 10=50$
Total number of CCDs	560	180
Wavelength band	Defined by CCD QE	Defined by CCD QE
CCD Quantum efficiency	CCD \#3	CCD \#3
Pixel MTF	0.4 @ Nyquist freq.	GST Study Report values
TDI integration time per chip	0.9 s	3.3 s
Overall aberration WFE	36 nm rms	45 nm rms
TDI errors	0.3 pixel rms	0.2 pixel rms
Optical transmission	> 0.9	>0.86

Parameter	Previous design	New Design
Focal plane scale	$\begin{aligned} & 1 \text { arcsec }=242 \mathrm{~m} \\ & \text { Pixel along scan }=9 \mathrm{~m}=37.1 \mathrm{mas} \\ & \text { Pixel across scan }=27 \mathrm{~m}=111 \mathrm{mas} \end{aligned}$	$\begin{aligned} & 1 \mathrm{arcsec}=226 \quad \mathrm{~m} \\ & \text { Pixel along scan }=10 \quad \mathrm{~m}=44.2 \mathrm{mas} \\ & \text { Pixel across scan }=30 \quad \mathrm{~m}=133 \mathrm{mas} \end{aligned}$
Airy radius @ I = 0.7 m	Along scan : $20.6 \mathrm{~m}(85 \mathrm{mas})$ Across scan : 50 m (206 mas)	Along scan : $23.3 \mathrm{~m}(103 \mathrm{mas})$ Across scan : 65.3 m (289 mas)
Star speed along scan	Entrance space : $120 \mathrm{arcsec} / \mathrm{s}$ Focal plane : $29.1 \mathrm{~mm} / \mathrm{s}$	Entrance space : $60 \mathrm{arcsec} / \mathrm{s}$ Focal plane : $13.6 \mathrm{~mm} / \mathrm{s}$
Star speed across scan (maximum value)	$\begin{aligned} & \text { Entrance space : } 171 \mathrm{mas} / \mathrm{s} \\ & \text { Focal plane : } 41.4 \mathrm{~m} / \mathrm{s} \end{aligned}$	Entrance space : $171 \mathrm{mas} / \mathrm{s}$ Focal plane: $38.6 \mathrm{~m} / \mathrm{s}$
Time-Field correspondence	$\begin{aligned} & 1 \mathrm{~s}=120 \mathrm{arcsec}=0.033 \mathrm{deg} \\ & 1 \text { pixel along scan }=0.309 \mathrm{~ms} \end{aligned}$	$1 \mathrm{~s}=60 \mathrm{arcsec}=0.0167 \mathrm{deg}$ 1 pixel along scan $=0.735 \mathrm{~ms}$
Astro field-of-view	Effective FOV: W = $0.32 \mathrm{deg}_{-}$ FOV across scan: $\mathrm{H}_{\mathrm{x}}=0.66 \mathrm{deg}$ FOV along scan: $H_{y}=0.56$ deg FOV swept per second : $\mathrm{H}_{\mathrm{x}} \cdot \mathrm{w}=0.022 \mathrm{deg}_{-} / \mathrm{s}$	Effective FOV: W = 0.415 deg_; FOV across scan: $H_{x}=0.66$ deg FOV along scan: $\mathrm{H}_{\mathrm{y}}=0.66$ deg FOV swept per second: $\mathrm{H}_{\mathrm{x}} \cdot \mathrm{w}=0.011 \mathrm{deg}_{-} / \mathrm{s}$
Integration time	TDI integration time : $\mathrm{t}_{\mathrm{e}}=0.9 \mathrm{~s}$ (26.2 mm or 2912 pixels) Integration time per passage : $\mathrm{t}=15.3 \mathrm{~s}$ Total integration time over the lifetime : $\mathrm{T}=\mathrm{LW} /(4 \mathrm{p})=978 \mathrm{~s}$	TDI integration time : $\mathrm{t}_{\mathrm{e}}=3.3 \mathrm{~s}$ ($\sim 45 \mathrm{~mm}$ or 4500 pixels) Integration time per passage : $\mathrm{t}=38.2 \mathrm{~s}$ Total integration time over the lifetime: $\mathrm{T}=\mathrm{LW} /(4 \mathrm{p})=1587 \mathrm{~s}$
Average total number of focal plane passages per star per telescope.	$\mathrm{N}=\mathrm{T} / \mathrm{t}=64 \text { observations }$ (or great circles)	$\mathrm{N}=\mathrm{T} / \mathrm{t}=41$ observations (or great circles)
Star number and flow (per telescope)	Average star flow: $\mathrm{N}_{\mathrm{s}} \mathrm{H}_{\mathrm{y}} \mathrm{w}=550$ stars $/ \mathrm{s}$ Average number of stars in the FOV : $\mathrm{N}_{\mathrm{s}} \mathrm{W}=8000$ stars Rate of processed stars: $\mathrm{N}_{\mathrm{s}} \mathrm{W} / \mathrm{t}_{\mathrm{e}}=8890 \mathrm{stars} / \mathrm{s}$	Average star flow : $\mathrm{N}_{\mathrm{s}} \mathrm{H}_{\mathbf{s}} \mathrm{w}=275$ stars $/ \mathrm{s}$ Average number of stars in AF FOV : $\mathrm{N}_{\mathrm{s}} \mathrm{W}=10000$ stars Rate of processed stars: $\mathrm{N}_{\mathrm{s}} \mathrm{W} / \mathrm{t}_{\mathrm{e}}=3145 \mathrm{stars} / \mathrm{s}$

Spectrometer Telescope (common to RVS and MBP)		
	Previous Design *	New Design
Entrance pupil	$0.75 \mathrm{~m} \times 0.7 \mathrm{~m}$	$0.5 \mathrm{~m} \times 0.5 \mathrm{~m}$
Focal length	4.17 m	2.1 m
Field of view (optical)	$4 \times 1 \mathrm{deg}^{2}$	$2 \times 4.8 \mathrm{deg}^{2}$
Optical transmission	> 0.92	>0.92
Medium Band Photometry (MBP)		
	Previous Design *	New Design
Field of view (optical)	2×1 deg 2	$2 \times 3.2 \mathrm{deg}^{2}$
Pixel dimensions	$10 \times 10 \mu \mathrm{~m}^{2}=0.5 \times 0.5 \mathrm{arcsec}^{2}$	$10 \times 15 \mu \mathrm{~m}^{2}=1 \times 1.5 \operatorname{arcsec}^{2}$
CCD active area	$7.25 \times 73 \mathrm{~mm}^{2}$	$3.36 \times 59 \mathrm{~mm}^{2}$
\# of CCDs (sky mapper excluded)	15	30
Number of MBP wavelength bands	11	11
Available integr. time/star passage	33 s	82.5 s
Total integration time/ star over 5 yr	3400 s	16800 s
Radial Velocity Spectrometer (RVS)		
	Previous Design *	New Design
Field of view (optical)	2×1 deg 2	$2 \times 1.6 \mathrm{deg}^{2}$
Pixel dimensions	$20 \times 20 \mu \mathrm{~m}^{2}=1 \times 1 \operatorname{arcsec}^{2}$	$10 \times 15 \mu \mathrm{~m}^{2}=1 \times 1.5 \mathrm{arsec}^{2}$
CCD active area	$73 \times 24 \mathrm{~mm}^{2}$	$10 \times 59 \mathrm{~mm}^{2}$
\# of CCDs (sky mapper excluded)	6	3
Spectral range	$847-870 \mathrm{~nm}$	$848-874 \mathrm{~nm}$
Spectral sampling	0.75 A per pixel	0.375 A per pixel
Number of spectral samples per star	330	694
Available integr. time/ star passage	60 s	101 s
Total integration time/ star over 5 yr	6100 s	10100 s

Scientific requirements for the focal plane

- The mission

Astrometry, photometry, spectroscopy
Object counts and implications

- For which objects (stars, galaxies, asteroids, background)
- The astrometric focal plane

A global vision

- On-board detection

The CCDs

- Samples, patches and windows
- Travelling in the focal plane
- The spectro focal plane

Overall description

- Many ways to describe the focal plane!
- Science (function): ASM (detection) AF (astrometry) BBP (photometry)
- Reading (algo+elect.): ASM1/2 (all read) AF+BBP (selected)
- Sampling (electronics): ASM (2×2)
- Patches (telemetry):
-
- Activation:
redundancies
AF1(1×2)
AF2-10 AF11 BBP
several differences -
AF2 if AF1 fails Other

Various objects

Globular cluster

- Stars
- Motion during integration

. High density
- NEO
- Galaxies
- Large area

Lar

Galaxies

The M100 galaxy with HST

in ASM1

zoomed

- Unresolved galaxies are not a priority
- observed however

Object counts

- 3 levels of buffer or CPU maxima
- Maximum on a CCD (when observing a globular cluster)
- Maximum on the focal plane (when the satellite observes the galactic center)
- Maximum Telemetry (great-circle along the galactic plane)

Number of stars per bins in USNO A1 (G<19)

Astrometric focal plane

\square

Spectro field

- Confirmation and redundancy
- For spectro sky mapper
- Two MBP fields
- $1+15$ CCDs $=1+11$ filters TBC

Sampling

Sampling and patches

- Scientific Requirements
- Highest precision along-scan
- Highest signal/noise : smallest read-out noise : electronic binning
- Enough flux per object for on-ground reconstruction (two close objects)
- Technical Constraints
- CPU: limited instantaneous number of objects
- Telemetry: small number of patches, size of patches
- Number of samples $A C$ fixed by the max. density
- 3.10^{6} in astro
- $\sim 10^{5}$ in MBP, TBC

Sampling in the astrometric field

Sampling in Astro and MBP

ASM = Astro Sky Mapper; AF = Astrometric Field; BBP = Broad-Band Photometer
Windows: WAn for ASM, AF; WBn for BBP; WMn for MBP; WYnn with distance Y=nn

Read:

Transmit for $\overline{\mathrm{G}}=12-16$:

Transmit for $\mathrm{G}=16-20$:

Copenhagen University Observatory - E. Hoeg - 21 October 2002

Patches for double stars

- A large fraction of stars have a companion
- Plus optical companion in dense areas
- Data reduction complicated
- One or several patches
- Depends on the separation between components
- Size of patches is critical
- Both components may be damaged if only a small part of one component is in the patch

RVS

RVS specific problems

- High resolution gives a better precision on radial velocity
- $R=11500$ means 694 pixels AL
- Large crowding
- Transverse motion : signal over several pixel AC
- Less than 1 photon/pixel at mag 17
- Thus the rotation mechanism
- 3 CCDs instead of 6 suggested

RVS full CCDs

- When crowding is such high that the RVS CCD should be entirely downloaded?
- Galactic coordinates, limiting magnitude=17, $R=10000$, row/spectrum=2

Total number of stars observed by RVS during day 34 to 35 Starcount : GSC2.2 F-band, Magnitude limit = 17

Total number of stars observed by RVS during day 411 to 412

Time in days from J2000.0

Total number of stars observed by RVS during the whole GAIA mission
Starcount : GSC2.2 F-band, Magnitude limit $=17$

RVS algorithms

- Pre-processing
- Detection
- All RVSM read TBC
- Then whole reading of the 3 RVS CCDs
- Post-processing (TBC)
- Selection/windowing
- 694×1 or 2 depending on PSF/pixels positions
- Summing of the 3 CCD?
- Extraction of Ca II lines for faint stars?
- Classical compression
- Possible calibrations
- angle of rotation mechanism

Observing strategy

All this TBC in a forthcoming document

Instrument/detection/selection

$2600 \times 1966,1.9 \mathrm{~s} 4500 \times 1966,3.3 \mathrm{~s}$

- Instrument
- 2 FOVs, different transverse motion
- One sky mapper for each
binning 2×2
- Confirmation in AF1 binning 1×2
- 9 following AF binning 1×12
- Binning $1 \times$ because all contribute to astro. precision
- AF2 could play AF1 role when failure
- Detection
- All samples read in ASM
- Detection occur (in some sliding window)
- Results sent for selection
- Selection and tracking
- Management of which patches to observe in AF1
- Ask for AF1 samples
- Confirms detection
- Send a patch (was 5×5 samples in former design)
- Compute at regular intervals the motion
- Tracking for AF2, etc.

Detection - requirements

- Observations
- $G<20^{\mathrm{m}}$ completeness
- For fainter objects, download at least position+magnitude+background from ASM
- Galaxies and nebulae? Not a priority
- False detections
- Larger number of patches in AF1 to cope with false detections/cosmic rays
- Precision
- Good enough for object tracking
- For scan rate computation ($\sim 1 \mathrm{mas} / \mathrm{s}$)
- Classification
- For priority levels
- Processing should be
- fast <1.9+3.3s (ASM1), <5.5s (RVSM),
- robust

Selection - requirements

- After detection:
- Which objects to observe
- How (centering, size, overlapping, ...) in each CCD (=observing strategy)
- What to download
- A priority
- To bright stars
- May also depend on other criteria
- Selection reproducible on ground (censorship)
- Constraints
- Limited number of patches should cope with high density fields
- Take care of double stars (no sample overlapping)
- Storage (possible downlink failure)
- Telemetry (some great circles ~ along the galactic plane)

