Gaia II Scientific baselines

On-board detection working group

The instruments

Scanning law

Spin axis50° to SunScan rate:60 arcsec/sSpin period:6 hours

16/12/02 - F.A.

Scanning law

The stellar density in equatorial coordinates

Astrometric focal plane

Spectrometer and MBP/RVS focal plane

Basic unchanged principles

- Two viewing directions with 106° basic angle
- Separate spectroscopic telescope including the medium-band photometer and the radial velocity spectrometer
- The on-board detection (except for bright stars)
- The limiting magnitude G=20
- The astrometric accuracies as a function of magnitude
- Satellite at the L2 position, coverage ~ 8 hours / 24
- Telemetry rate at about 1 Mbps on average

What has changed

- The fairing diameter reduced from 4.2 m to 3.8 m for a Soyuz launch
- The revised optical design has a shorter focal length and an intermediate focus
- The lower distortion allows larger CCD chips, smaller number of CCDs
- A longer integration time per chip (from 0.9 s to 3.3 s)
- Both viewing directions are now superimposed on a single focal plane
- The two fields having different cross-scan motions
- Some complications in terms of on-board object detection and windowing
- A slower spin rate of 60 arcsec/s (reduced from 120 arcsec/s)
- increasing the elementary integration time and reducing the telemetry further
- with some impact on the regularity of sky sampling
- Smaller sun aspect angle of 50° (reduced from 55°) due to the smaller sun-shield
- Degrading slightly the decoupling of the astrometric parameters.

GENERAL PARAMETERS			
!	Former Design	New Design	
Observing time L	L = 4 years	L = 5 years	
Scan rate ω	120 arcsec/s	60 arcsec/s	
Precession period ω_p	70 days	70 days	
Rotation axis	55° from sun direction	50° +/- 0.1° from sun direction	
Star population V < 20 Average value «!Worst case!»	! N _s = 25 000 stars/deg ² 3 000 000 stars/deg ²	! N _s = 25 000 stars/deg ² 3 000 000 stars/deg ²	
Total number of observed stars	~ 1 billion	~ 1 billion	

(from Astrium final report)

PARAMETERS OF THE ASTROMETRIC INSTRUMENT				
!	Previous Design	New Design		
Basic angle	106 deg	106 deg		
Entrance pupil	1.7 m x 0.7 m	1.4 m x 0.5 m		
Focal length	50 m	46.67 m		
Field of view (effective)	0.32 deg ²	> 0.4 deg ²		
FOV height	0.66 deg across	0.66 deg across scan		
Spot sampling	6 pixels	6 pixels		
Pixel size	9 μm x 27 μm	10 µm x 30 µm		
CCD active area	29 mm x 58 mm	45 mm x 59 mm		
Number of CCDs in Astro fields	2 x 17 x 10 = 340	11 x 10 = 110		
Sky mapper CCDs	2 x 70 = 140	2 strips x 10 CCDs = 20		
Broad Band Photometry	2 x 4 x 10 = 80	5 x 10 = 50		
Total number of CCDs	560	180		
Wavelength band	Defined by CCD QE	Defined by CCD QE		
CCD Quantum efficiency	CCD #3	CCD #3		
Pixel MTF	0.4 @ Nyquist freq.	GST Study Report values		
TDI integration time per chip	0.9 s	3.3 s		
Overall aberration WFE	36 nm rms	45 nm rms		
TDI errors	0.3 pixel rms	0.2 pixel rms		
Optical transmission	> 0.9	> 0.86		

(from Astrium final report)

USEFUL FIGURES FOR ASTRO INSTRUMENT				
Parameter	Previous design	New Design		
Focal plane scale	1 arcsec = 242 μm Pixel along scan = 9 μm = 37.1 mas Pixel across scan = 27 μm = 111 mas	1 arcsec = 226 μm Pixel along scan = 10 μm = 44.2 mas Pixel across scan = 30 μm = 133 mas		
viry radius @ I = 0.7 μm	Along scan : 20.6 μm (85 mas) Across scan : 50 μm (206 mas)	Along scan : 23.3 μm (103 mas) Across scan : 65.3 μm (289 mas)		
itar speed along scan	Entrance space : 120 arcsec/s Focal plane : 29.1 mm/s	Entrance space : 60 arcsec/s Focal plane : 13.6 mm/s		
Star speed across scan (maximum value)	Entrance space : 171 mas/s Focal plane : 41.4 µm/s	Entrance space : 171 mas/s Focal plane : 38.6 µm/s		
Fime-Field correspondence	1 s = 120 arcsec = 0.033 deg 1 pixel along scan = 0.309 ms	1 s = 60 arcsec = 0.0167 deg 1 pixel along scan = 0.735 ms		
Astro field-of-view	Effective FOV: $W = 0.32 \text{ deg}_FOV \text{ across scan: } H_x = 0.66 \text{ deg}FOV \text{ along scan: } H_y = 0.56 \text{ deg}FOV \text{ swept per second :} H_x.w = 0.022 \text{ deg}/s$	Effective FOV: W = 0.415 deg_; FOV across scan: $H_x = 0.66$ deg FOV along scan: $H_y = 0.66$ deg FOV swept per second : $H_x.w = 0.011$ deg_/s		
ntegration time	TDI integration time : $t_e = 0.9 \text{ s}$ (26.2 mm or 2912 pixels) Integration time per passage : $t = 15.3 \text{ s}$ Total integration time over the lifetime : T = LW/(4p) = 978 s	TDI integration time : $t_e = 3.3 \text{ s}$ (~ 45 mm or 4500 pixels) Integration time per passage : $t = 38.2 \text{ s}$ Total integration time over the lifetime : T = LW/(4p) = 1587 s		
Average total number of focal plane passages per star per elescope.	N = T/t = 64 observations (or great circles)	N = T/t = 41 observations (or great circles)		
Star number and flow (per elescope)	Average star flow : $N_s H_y w = 550$ stars/s Average number of stars in the FOV : $N_s W = 8$ 000 stars Rate of processed stars: $N_s W/t_e = 8$ 890 stars/s	Average star flow : $N_s H_y w = 275$ stars/s Average number of stars in AF FOV : $N_s W = 10\ 000$ stars Rate of processed stars: $N_s W/t_e = 3\ 145$ stars/s		

(from Astrium final report)

	Previous Design *	New Design
Entrance pupil	0.75 m x 0.7 m	0.5 m x 0.5 m
Focal length	4.17 m	2.1 m
Field of view (optical)	4 x 1 deg ²	2 x 4.8 deg ²
Optical transmission	> 0.92	> 0.92
Мес	lium Band Photometry (MBP)	
!	Previous Design *	New Design
Field of view (optical)	2 x 1 deg ²	2 x 3.2 deg ²
Pixel dimensions	$10x10 \ \mu m^2 = 0.5x0.5 arcsec^2$	10x15 <i>µ</i> m²=1x1.5arcsec²
CCD active area	7.25 x 73 mm ²	3.36 x 59 mm ²
# of CCDs (sky mapper excluded)	15	30
Number of MBP wavelength bands	11	11
Available integr. time/star passage	33 s	82.5 s
Total integration time/ star over 5 yr	3 400 s	16 800 s
Radi	al Velocity Spectrometer (RVS)	
!	Previous Design *	New Design
Field of view (optical)	2 x 1 deg ²	2 x 1.6 deg ²
Pixel dimensions	20 x 20 μ m ² = 1 x 1arcsec ²	10x15 <i>µ</i> m²= 1x1.5arsec²
CCD active area	73 x 24 mm ²	10 x 59 mm ²
# of CCDs (sky mapper excluded)	6	3
Spectral range	847 – 870 nm	848 – 874 nm
Spectral sampling	0.75 A per pixel	0.375 A per pixel
Number of spectral samples per star	330	694
Available integr. time/ star passage	60 s	101 s
Total integration time/ star over 5 yr	6 100 s	10 100 s

from Astrium final report)

Scientific requirements for the focal plane

- The mission

- Astrometry, photometry, spectroscopy
- Object counts and implications
- For which objects (stars, galaxies, asteroids, background)
- The astrometric focal plane
 - A global vision
 - On-board detection
 - The CCDs
 - Samples, patches and windows
- Travelling in the focal plane
- The spectro focal plane

Overall description

Many ways to describe the focal plane !

- Science (function): ASM (detection)
- Reading (algo+elect.): ASM1/2 (all read)
- Sampling (electronics): ASM (2x2)
- Patches (telemetry):
- Activation:

redundancies

AF (astrometry)BAF+BBP (selected)AAF1(1x2)Aseveral differences-AF2 if AF1 failsO

BBP (photometry) AF2-10 AF11 BBP -Other

16/12/02 - F.A.

Various objects

Globular cluster

High background

Near-Earth Objects

Stars

High density

NEO

- Motion during integration
- Galaxies
 - Large area

16/12/02 - F.A.

Galaxies

The M100 galaxy with HST

in ASM1

zoomed

- Unresolved galaxies are not a priority
- observed however

16/12/02 - F.A.

Object counts

3 levels of buffer or CPU maxima

- Maximum on a CCD (when observing a globular cluster)
- Maximum on the focal plane (when the satellite observes the galactic center)
- Maximum Telemetry (great-circle along the galactic plane)

Number of stars per bins in USNO A1 (G<19)

Astrometric focal plane

Spectro field

Sampling and patches

Scientific Requirements

- Highest precision along-scan
- Highest signal/noise : smallest read-out noise : electronic binning
- Enough flux per object for on-ground reconstruction (two close objects)

Technical Constraints

- CPU: limited instantaneous number of objects
- Telemetry: small number of patches, size of patches
- Number of samples AC fixed by the max. density
 - 3.10⁶ in astro
 - \blacksquare ~10⁵ in MBP, TBC

Sampling in the astrometric field

Patches for double stars

- A large fraction of stars have a companion
 - Plus optical companion in dense areas
- Data reduction complicated
- One or several patches
 - Depends on the separation between components
- Size of patches is critical
 - Both components may be damaged if only a small part of one component is in the patch

RVS specific problems

- High resolution gives a better precision on radial velocity
- R=11500 means 694 pixels AL
- Large crowding
- Transverse motion : signal over several pixel AC
- Less than 1 photon/pixel at mag 17
- Thus the rotation mechanism
- 3 CCDs instead of 6 suggested

Spectrum motion

SE

RVS full CCDs

When crowding is such high that the RVS CCD should be entirely downloaded?

Galactic coordinates, limiting magnitude=17, R=10000, row/spectrum=2

Total number of stars observed by RVS during the whole GAIA mission Starcount : GSC2.2 F-band, Magnitude limit = 17

RVS algorithms

Pre-processing

- Detection
- All RVSM read TBC
- Then whole reading of the 3 RVS CCDs

Post-processing (TBC)

- Selection/windowing
 - 694 x 1 or 2 depending on PSF/pixels positions
- Summing of the 3 CCD?
- Extraction of Ca II lines for faint stars?
- Classical compression
- Possible calibrations
 - angle of rotation mechanism

Observing strategy

All this TBC in a forthcoming document

Instrument/detection/selection

ASM1 ASM2 AF1 AF2 2600×1966, 1.9s 4500×1966, 3.3s

Instrument

- 2 FOVs, different transverse motion
 - One sky mapper for each binning 2x2
- Confirmation in AF1

9 following AF

- AF1 binning 1x2 binning 1x12
- Binning 1x because all contribute to astro. precision
- AF2 could play AF1 role when failure

Detection

- All samples read in ASM
- Detection occur (in some sliding window)
- Results sent for selection

Selection and tracking

- Management of which patches to observe in AF1
- Ask for AF1 samples
- Confirms detection
- Send a patch (was 5x5 samples in former design)
- Compute at regular intervals the motion
- Tracking for AF2, etc.

Detection - requirements

Observations

- G < 20^m completeness
- For fainter objects, download at least position+magnitude+background from ASM
- Galaxies and nebulae? Not a priority
- False detections
 - Larger number of patches in AF1 to cope with false detections/cosmic rays
- Precision
 - Good enough for object tracking
 - For scan rate computation (~1mas/s)
- Classification
 - For priority levels
- Processing should be
 - fast <1.9+3.3s (ASM1), <5.5s (RVSM),
 - robust

16/12/02 - F.A.

Selection - requirements

After detection:

- Which objects to observe
- How (centering, size, overlapping, ...) in each CCD (=observing strategy)
- What to download
- A priority
 - To bright stars
 - May also depend on other criteria
- Selection reproducible on ground (censorship)
- Constraints
 - Limited number of patches should cope with high density fields
 - Take care of double stars (no sample overlapping)
 - Storage (possible downlink failure)
 - Telemetry (some great circles ~ along the galactic plane)