The Gaia mission Status of satellite development

Philippe Charvet Gaia Payload Module manager Instrumentation division Earth Observation & Science EADS Astrium – Toulouse

EADS

OPTRO 2010 - February,3

OPTRO 2010 – February,3

Gaia science objectives

The mission covers 3 fields

- Astrometry : star position and motions: 7 to 25 µas (V<15)</p>
- Photometry : spectral measurements [330– 1000 nm] and chromaticity correction
- Spectroscopy : radial velocity: 1 km/s and fine spectral measurement [847 - 874 nm]
- Catalogue of 1 billion stars, up to mag 20^{0.0001}

- The Astro measurement is based on Hipparcos principles
 - 2 observing directions
 - separated by the Basic Angle 106.5 deg
 - with a stringent stability of <7 µas (35 pico radians)
 - the continuous scan of the sky
 - great circles are observed in 6 hours
 - a slow precession guarantees the full sky coverage (period of ~63 days)
 - repeated observations
 - 80 observations (transits) per star
 - 9 CCD acquisitions per transit in the focal plane

Industrial organization

Core team	Satellite Prime (Astrium)		
	E-SVM (Astrium-UK)	M-SVM (Astrium-G)	PLM (Astrium-F)
Austria		Thermal HW - RUAG	Thermal HW - RUAG
Belgium			Mirrors 2,4,5- Amos
Finland	Elec. Interface Unit - Patria		
France	Gyro - Astrium		FPA, RVS OMA - Astrium SiC parts - Boostec M1 mirrors - Sagem
Germany		S/C mech. & thermal analyses - astrium	Thermal analyses - Astrium M3 mirrors – Zeiss
Italy	Power (PCDU) - Galileo TRSP, Micro Prop. – TAS		Interconnexion Module – TAS Photometer - Galileo
The Netherlands	Fine Sun Sensor - TNO		BAM OMA, WFS - TNO
Norway			Opt. Sources & Electron. – KDA
Spain	Phased Array Antenna - CASA	Structure, Harness – CASA Deployable Sunshield - Sener	Proximity Electronics – Crisa M2 mechanism – Sener Atomic Clock (CDU) - TAS
Sweden	CDMU - RUAG		
Switzerland	PDHU - Syderal	Thermal Tent - RUAG	Bipods & Release Mech RUAG
UK	Central Software - Astrium Chemical Propulsion - Astrium		Video Processing Unit – Astrium CCD – e2v

Spacecraft equipment design status

Spacecraft overview

- Spacecraft design is frozen
 - CDR of modules passed (E-SVM, M-SVM, PLM, SW)
 - Late change of motorisation concept for the sunshield decided last month
- Spacecraft budgets are within specifications, with exception of
 - Mass budget, with a margin slightly lower than specified for CDR
 - 3.5% margin (70 kg) wrt Soyuz-Fregat performance
 - Basic angle stability budget to be confirmed for CDR, with:
 - 5 µas for 7 µas specified for random contribution
 - 5 10 µas for 4 µas specified for systematic contribution
- Impacts of radiation on science performance now assessed
 - Contained through combination of pre-calibration and post-processing activities
 - Major concern of PDR in 2007, now addressed through CDR 2010
- S/C CDR data package delivered to ESA by end of June

Spacecraft development status

- S/C integration will start in Toulouse this summer
 - SVM structure equipped with propulsion systems to be sent from Stevenage
 - Pressurisation tests successfully passed in Westcott facility in May this year
 - Complete central software available & validated for start of S/C AIT
 - PLM torus is now mounted on its flight bipods
- Functional and performance validation on going
 - Pre-validation of the full detection chain achieved on the FPA EM end of last year
 - S/C functional validation on going on AVionics Model (flat-sat) in Stevenage
 - Integrated Subsystem tests (on going), Integrated System test (Started)
 - AOCS performance validated through simulation campaigns
 - Chemical Propulsion modes completed
 - Micro-propulsion modes (supporting science) on going

Structure with propulsion systems

AVionic Model in Stevenage

Data management & communication

Attitude & Orbit

Caia

Deployable Sunshield Assembly

- Major design change recently introduced
- Qualification of passive deployment system failed in cold vacuum condition
 - Insufficient control torque provided by regulator (motorisation / braking)
 - Not possible to strengthen failed item within geometrical constraints
 - Decision to switch to an electrical motorisation taken by end May 2010
 - New design based on existing elements
 - Actuator recurring from GMES Sentinel 1
 - Specific four lever arm linkage system
 - Drive electronic derived from PLM MDE
 - First tests demonstrates adequate torques
 - Full redounded system baselined
 - Two actuators selected
 - Each actuator is driven by an internally redounded electronics
 - DSA CDR to be held in the coming days.

Four bar linkage system with actuator and master hinge assembly

OPTRO 2010 – February,3

Payload instruments (1 payload, 3 science objectives, 5 instruments)

Astrometry

performed with 2 TMA telescopes at 106.5 deg and a common focal plane

Gaia Payload Module

Radial Velocity Spectrometer & Photometers

share the same focal plane than Astro

3 fields (Astro, Photometers & RVS) in Focal Plane Assembly

Metrology

✓ WFS for initial alignment after launch

 Basic Angle Monitoring by interferometry through the complete optical path of telescopes
 M2 Mechanism: 5 axes refocusing

- Optical bench: torus 3m diam., 200 kg
 - Complex 3D geometry
 17 segments machined within ~20 µm
 - Brazing succeeded in July 2009

Focal Plane Assembly structures

- 1m light-weighted CCD support structure
- Cold Radiator for structural, thermal, radiation functions: the biggest monolithic part
- Bolted interfaces polished to less than 2µm to minimize integration stresses
- Mirror blanks: 17 mirrors
 - SiC CVD performed on the optical surface
 - SiC enables stiff, polishable & lighter mirrors
 - Good stability (high conductivity, low thermal expansion)
 - => 1.5 m large M1 mirrors with only 40 kg each

=> Silicon Carbide has made Gaia feasible with the mass constraint of Soyuz launcher

Silicon Carbide mirrors – Technology & status

- Light-weighted blanks (Boostec-Fr)
 - SiC is pressed, machined sintered & ground
- SiC chemical vacuum deposit (Schunk-G)
 - Reduction of the scattering of sintered SiC
 - Some hundreds of µm thick
- Polishing (Amos-B, Sagem-Fr & Zeiss-G)
 - Computer Controlled Polishing & Ion Beam Figuring used wrt the hardness of SiC CVD
 - Final roughness in the nm range
 - WFE in the range of 20 nm rms
- Silver coating (Sagem & Zeiss)
 - Both coatings have been successfully qualified
- 17 mirrors in development
 - 5 mirrors for PLM structural model:
 - 2 M4, M5-a, 2 AC-flat delivered. M5-b ready.
 - M2-a, M3-a in final phase
 - M1-a & b foreseen in Summer

- 2 Three Mirror Anastigmat telescopes
 - Aperture:1.46 x 0.51 m, focal length:35 m
 - M1, M2 are 8th order aspherical surfaces M1 off-axis of 0.9 m, light-weighted structure
 - M3 is defined by 2D polynomia
 - Wave Front Errors of 20 nm

Gala

A very large Focal Plane Assembly

- Large & compact assembly
 - 180 kg, 340 W
 - Focal plane lay-out
 - 7 CCD rows of 106 CCD
 - Blue & red Photometer prisms
 - 2 Wave Front Sensors
 - Protection to radiations (Cold Radiator)
 - FPA & PLM proximity electronics
 - 106 Proximity Electronics Modules
 - 7 Interconnexion Modules
 - Refocusing mechanism electronics
 - Optical Sources & Electronics (OSE) for WFS & BAM

2 step thermal decoupling

- CCD at -110°C from electronics at ambient
 - Warm / cold FPA : GFRP bipods
 - 2 thermal shields between CCD & PEM
 - Cold Radiator in PLM cavity + ext. extensions
 - External PEM & IM radiators
- Optical bench from FPA (for stability)
 - Cold FPA / torus: GFRP FPA struts

Development status for FPA

- Successful FPA Engineering Model tests Structural Model tests in Sept.2010
- CCD (e2v-UK)
 - Broadband CCD delivered (AF, BAM & WFS): 80
 - Blue enhanced CCD delivered (BP): 7/7
 - Red enhanced CCD in production (RP & RVS): 16/19
- PEM (Crisa-Sp)
 - Qualification passed. FM production: 22 /106
- PEM/CCD coupling (MSSL-UK): 8 couples tested
- IM (TAS-I): Qualification delayed. On-going production
- WFS (TNO-NL): the 2 FM are delivered
- Blue & Red Photometers (Selex Galileo-I)
 - On-going Structural Model program. FM production started. BP prism produced
- M2M Drive Electronics (Sener-Sp): on-going qualification
- Optical Sources & Electronics (Kongsberg-N) for BAM & WFS: FM delivered

Real time video processing - VPU

- 7 VPU process the samples of each CCD row
 - HW-SW design: companion & processor boards
 - 630 MHz processor
- Complex sampling strategy
 - Monitors the CCD binning & modes (HR/LR)
 - Selects the gate, sampling & window per field, ... monitors conflicts & priorities
 - Manages up to 3.10⁶ stars/deg² in Astro
- Video Algorithms validation
 - Validation performed wrt science requirements
- VPU development
 - CDR successfully passed
 - SW Qualification Review successful
 - Successful test on EQM, but
 - Failure on processor board
 - Design locally changed
 - Mechanical qualification to be repeated
 - Life test performed
 - PFM/FM production authorized

Bright star detection...with rejection of ripples

VPU EQM

Allocation of windows with overlap in AF

Basic Angle Monitoring

Interferometry principle

- OSE unit generates a laser signal at 852 nm
- BAM OMA derive 2 beams toward each telescope
- Detection of fringes on BAM CCD
- Monitoring of BA within 0.5 µarcsec / 5 min
 - Detection accuracy of ~10⁻⁵ pixel per 5 min
 - OPD of 1.3 picometer
- Full silicon carbide assemblies
 - Monolithic bars & mirror brackets
 - Decoupling from PLM torus
- Stable optics assemblies (TNO-NL)
 - 22 mirrors, 3 beam splitters,
 - Collimator with optical fibber & off-axis SiC mirror
- BAM OMA development
 - All optical components have been breadboarded Stability of mirrors not tested yet in shock (1µrad)
 - Structural Model (bar #1) is now completed, ready for vibration tests, then reused for flight
 - Flight bars: integration starts now, leading to a full performance and environmental qualification

BAM bar with iso-static mounts

Radial Velocity Spectrometer – Design

- RVS principle
 - Correction of telescopes aberrations: λ/13
 - Narrow band pass filter [847 874 nm]
 - Spectra are imaged on 12 red CCD of FPA HR (bright stars): 1260 pixels ; LR : 3 AL pixel binning
 - Acquisition up to mag 17 (K1IIIMP)
 - Radial Velocity:1 km/s for star of mag 13 (G2V)
 - Mean spectral resolving power > 10 500

RVS Opto-Mechanical Assembly

Gala

RVS Opto-Mechanical Assembly

- Silica optics for 130K environment (Galileo-I)
 - 6 optical elements mounted with invar bipods
 - 2 wedged lenses (Fery prisms) & 2 prisms
 - Narrow band filter with stringent uniformity
 - Innovative large size binary effective medium grating 3.15 µm periodic substructure of 1.8 µm depth Transmission > 77%
- Stable C-shape SiC structure
 - Accessibility for optics integration
- Mass of 27 kg, 400 x 423 x 225 mm3

RVS grating demonstrator

RVS OMA – Development

- RVS OMA development (Astrium)
 - Design has been validated in 2009 (CDR)
 - Integration started for delivery by beg. 2011
- Prisms (Selex Galileo-I)
 - Full size breadboarding
 - 3 flight prisms are polished

RVS wedge lens breadboard

RVS SiC structure

Grating (IOF-G)

- Demonstrator was successful
- FM grating has been manufactured, on-going qualification
- Filter (Barr-US): starts after Red Photometer
- SiC structure (Boostec-Fr)
 - Manufactured, proof tested & delivered

