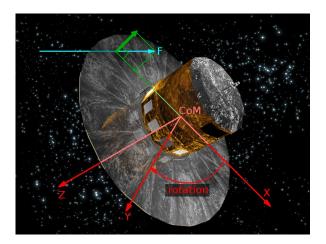

Gaia Attitude Model (GAM)

Table of Contents

Introduction

- 2 Model Description
- Some Preliminary Results
- 4 Last Remarks

▲ 伊 ▶ ▲ 王 ▶

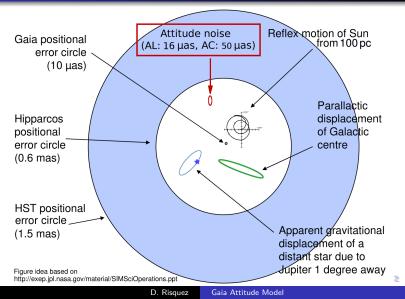

æ

What is GAM? Why GAM? Main Structure of GAM

What is GAM?

Aim: create a *physical* model of Gaia and study the satellite attitude

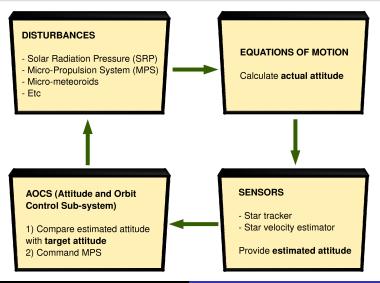
GAM output will replace current GASS (GAia System Simulator) attitude



▲ 同 ▶ ▲ 三

Introduction

Model Description Some Preliminary Results Last Remarks What is GAM? Why GAM? Main Structure of GAM


Why GAM?

Introduction

Model Description Some Preliminary Results Last Remarks What is GAM? Why GAM? Main Structure of GAM

Main Structure of GAM

D. Risquez

Introduction

Model Description Some Preliminary Results Last Remarks What is GAM? Why GAM? Main Structure of GAM

Model Interface

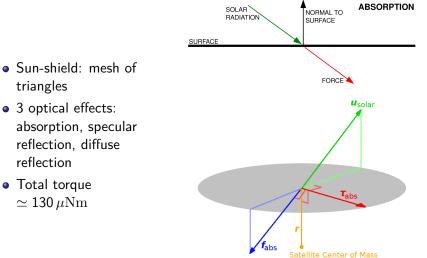
- Input:
 - Initial conditions
 - Selection of available disturbances on the attitude
 - Reference Scanning Law (spin axis and Sun position)
- Output:
 - Actual and estimated state
 - AOCS (Attitude and Orbit Control Sub-system) actions

→ < ∃ →</p>

Attitude and Orbit Control System (AOCS) Disturbances on the Attitude Sensors

Image: A image: A

- Get estimated attitude from sensors
- ② Compare with the target attitude (Reference Scanning Law)
- Calculate requested torque and command MPS (Micro-Propulsion System)

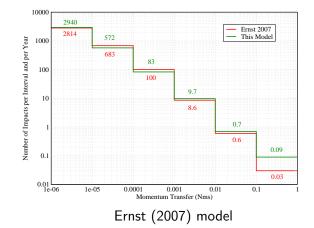

Attitude and Orbit Control System (AOCS) Disturbances on the Attitude Sensors

Disturbances on the Attitude

- Solar radiation pressure
- Micro-meteoroids
- Clanks (discontinuities in attitude while angular rate does not change, very unknown)
- Thermal IR emission from Gaia surface
- Micro-Propulsion System (MPS)
- And maybe others in the future

Attitude and Orbit Control System (AOCS) Disturbances on the Attitude Sensors

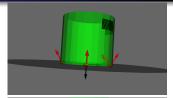
Disturbances: Solar Radiation



Attitude and Orbit Control System (AOCS) Disturbances on the Attitude Sensors

Disturbances: Micro-Meteoroids

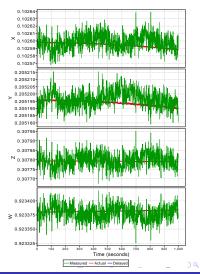
Big impacts make AOCS change mode


Small impacts not detected on-board, but degrade attitude reconstruction

Attitude and Orbit Control System (AOCS) Disturbances on the Attitude Sensors

Disturbances: Micro-Propulsion System

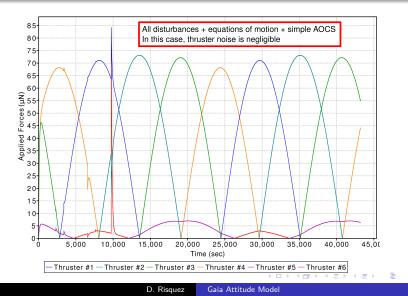
- Input: AOCS torque demand
- 6 cold-gas thrusters
- Considered disturbance because of its performances (characteristic noise, quantization, etc)
- Challenging design (force $\sim \mu$ Newtons!), concerns about noise \Rightarrow Important point to simulate



Attitude and Orbit Control System (AOCS) Disturbances on the Attitude Sensors

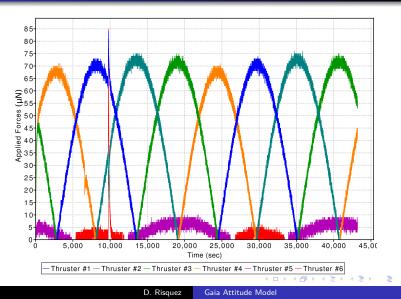
Sensors

- Two implemented sensors:
 - Star tracker
 - Angular rate
- Realistic characteristics: noise, delays, etc
- Plot on the right: example about star tracker. Quaternion (measured and actual) vs time

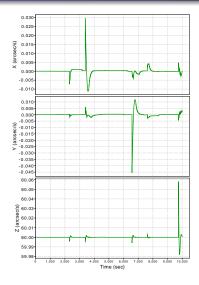

Current Status of GAM Plots

Current Status

- Astrium's AOCS is not implemented yet, simple AOCS instead (provisional)
- Consequence: results are very preliminary

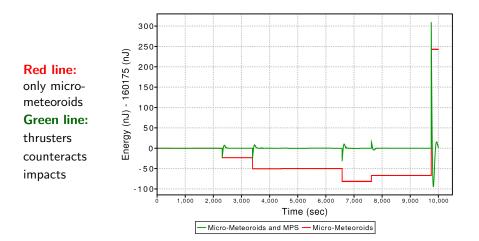

Current Status of GAM Plots

Thrusters Without Noise During 2 Spinning Cycles


Current Status of GAM Plots

Thrusters With Noise During 2 Spinning Cycles

Current Status of GAM Plots


Micro-Meteoroid Impacts + MPS: Angular Rate

- Example: 10 impacts
- Reference Scanning Law: (0,0,60 arcsec/s)
- Note: these impacts are not realistic, here they are stronger and more frequent than expected

Current Status of GAM Plots

Micro-Meteoroids and MPS: Rotational Energy

Summary Future Works

Summary

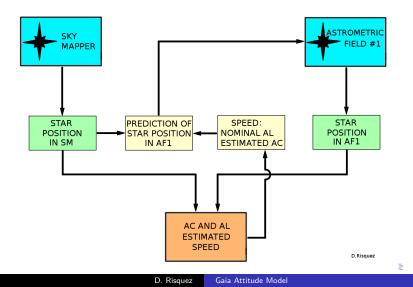
- This attitude simulation for Gaia is almost developed (code + documentation)
- It takes into account all major physical effects
- The aim is to have a better understanding of the S/C attitude and thus to improve the accuracy of the valuable data

Summary Future Works

Future Works

- Complete Astrium's AOCS code
- Complete documentation
- Implement GAM output in Gaia
- Simplify GAM in order to be executed by other users
- Maybe new code implementations: fuel slosh, mechanical oscillations, etc

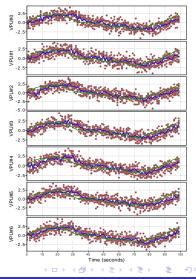
Summary Future Works


D. Risquez Gaia Attitude Model

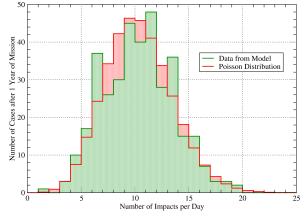
< ロ > < 部 > < き > < き > <</p>

æ

Summary Future Works

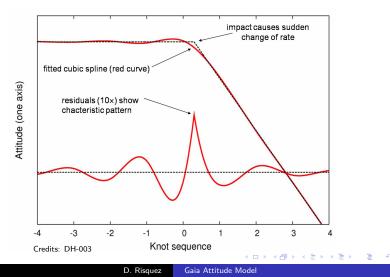

Star Velocities Measurements

Summary Future Works

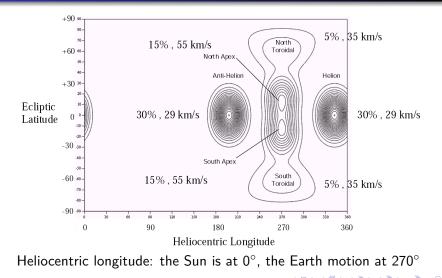

Star Velocities Measurement

- There is a delay (≈ seconds) with respect to the actual rate.
- It includes Gaussian noise to each star velocity measurement.
- Smooth output: mean velocities during transits.

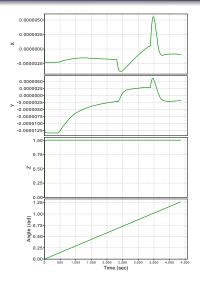
Summary Future Works


Micro-Meteoroids: Time Distribution

• Expected number of impacts per day, after one year of mission


Summary Future Works

Micro-Meteoroids: Expected Results


Summary Future Works

Micro-Meteoroids: Future Improvements, Sky Directions

Summary Future Works

Micro-Meteoroid Impacts + MPS: Attitude

- 3 upper plots: rotation axis, unit vector
- 4th plot: rotation angle around the axis
- Reference Scanning Law: (0, 0, 60 arcsec/s) → rotation around Z axis at constant angular rate

(日)