The astrometric solution of Gaia: A hard problem

Lennart Lindegren¹ and Ulrich Bastian²

¹Lund Observatory, Lund University, Lund ²Astronomisches Rechen-Institut, Heidelberg

Basic principles of scanning space astrometry

The same applies to Hipparcos, Gaia, nano-Jasmine, ...

- Why measurements are 1D
- How to get absolute parallaxes
- Scanning law
- Choice of basic angle
- Self-calibration principle
- The resulting numerical problem

Why are measurements one-dimensional?

The purpose is to build an **accurate** catalogue

Accuracy implies **absence of** (significant) **systematic errors**

An accurate catalogue of stellar positions defines an **undistorted** (α , δ) grid

Δ

Lindegren & Bastian: The astrometric solution of Gaia - a hard problem

An example of a catalogue we don't want...

Systematic errors in the positions look like a **distorted** (α , δ) grid

Lindegren & Bastian: The astrometric solution of Gaia - a hard problem

The same catalogue shown differently

Systematic error mapped across the celestial sphere

How Gaia "sees" the systematic errors (1/3)

Stars are measured relative to the centres of the two fields of view

7

- P = preceding FoV
- F = following FoV

G at a

How Gaia "sees" the systematic errors (2/3)

How Gaia "sees" the systematic errors (2/3)

Across scan:

Along scan:

How Gaia "sees" the systematic errors (3/3)

Conclusion:

- Across-scan measurements contribute NOTHING to the global astrometry!
- Shown here for positions only, but the same conclusion holds for proper motions and parallaxes

However:

- Orientation around x and y axes defines the AL direction and is therefore needed to lower precision (2nd order projection effect)
- Finite size of FoV allows some differential AC measurements

How to get absolute parallaxes

- What is the problem?
- Relative versus absolute parallaxes

Parallax mirrors the Earth's orbit as seen from the star

Lindegren & Bastian: The astrometric solution of Gaia - a hard problem

13

The actual motions are of course more complicated ...

Traditional parallax determination - ground-based or HST (in a field << 1 rad)

- All stars have similar parallactic motions, apart from a scaling factor (= parallax)
- Only relative parallaxes can be determined
- "Correction to absolute" requires a lot of guessing (unless there are enough quasars in the field)

Another way to look at parallax

Same seen from "outside" the celestial sphere

The apparent displacement due to the parallax is always directed towards the Sun

Absolute parallax measurement (1/3)

Absolute parallax measurement (2/3)

Absolute parallax measurement (3/3)

Conclusions:

- **Differential** along-scan measurements between the two FoV allows to determine **absolute** parallaxes
- Sensitivity is proportional to sin ξ sin Γ , where

ξ = Sun-spin axis angle	= 45°	for Gaia
Γ = basic angle	= 106.5°	for Gaia

- Technical constraints limit ξ (earlier Gaia design had $\xi = 55^{\circ}$)
- $\Gamma = 90^{\circ}$ ideal in principle, but undesirable for other reasons

Scanning law

- A large ($\approx 45^{\circ}$) Sun-spin axis angle (ξ) is necessary
- This angle must be kept constant to avoid variations of thermal load
- The scanning should cover as much sky as possible in a short time
- Successive great-circle scans must overlap (no gaps)
- These requirements leads to the Nominal Scanning Law used both for Hipparcos and Gaia
- It is a combination of 3 periodic motions (see animations)

Lindegren & Bastian: The astrometric solution of Gaia - a hard problem

Scanning law: 1st motion (P = 1 year)

Direction to Sun

Scanning law: 2nd motion (P = 63 days)

Direction to Sun

Spin axis

Scanning law: 3rd motion (P = 6 hr)

Direction to Sun Spin axis Field of view

Lindegren & Bastian: The astrometric solution of Gaia - a hard problem

Loops made by spin axis must overlap

Sky coverage (1/3)

Potential measurements of **a** at $\mathbf{z}_1 \mathbf{z}_2 \mathbf{z}_3$

Speed of **z** must be small enough to ensure actual measurement at $\mathbf{z}_1 \, \mathbf{z}_2 \, \mathbf{z}_3$

Sky coverage (2/3)

Potential measurements of **a'** at one **z** only

Speed of **z** must be large enough to ensure loop overlap

Sky coverage (3/3)

Number of FoV crossings per star (5 yr)

Choice of basic angle (Γ)

SC

- $\Gamma = 90^{\circ}$ (ideal for parallaxes) gives bad connectivity along great circle
- In fact $\Gamma = 360^{\circ} \times (n/m)$ should be avoided for small integers n, m

Cala Gala

Choice of basic angle: 1D case (great circle)

С

Choice of basic angle: 2D case (sphere)

Great-circle scans are not processed in isolation the astrometric solution is global (whole celestial sphere)

Question:

Are there any "bad" angles that should be avoided (equivalent to $360^{\circ} \times (n/m)$ on the circle)?

Cai a

The five Platonic solids

The vertices of a Platonic solid define a grid of "equidistant" points on the circumscribed sphere

Source: Wikipedia

Perhaps these angles (ϕ) should be avoided?

Choice of basic angle: 2D case (sphere)

Choice of basic angle (Γ)

Conclusions:

- $\Gamma = 90^{\circ}$ is optimal from a "global" viewpoint
- Nevertheless a slightly different value (106.5°) was selected for Gaia
- This avoids (n/m) congruence for a partial "great-circle reduction"
- It allows the "One Day Astrometric Solution" (ODAS) as a first-look check of instrument health

Self-calibration

The measurements (observation times) depend on:

- the astrometric parameters of the stars
- the instantaneous pointing of the instrument (attitude)
- the geometrical calibration parameters
- several global parameters (e.g. PPN γ)

These "nuisance parameters" are determined from the same data as the astrometric parameters

Self-calibration

Analogous camera calibration problem in computer vision

 the optical parameters and pixel geometry of the camera

Self-calibration using a moving camera

With \geq 7 point correspondences and \geq 3 camera positions, all parameters can be recovered up to a scale factor (Maybank & Faugeras 1992).

The resulting numerical problem

The observation equation for one observation, t_{obs} :

$$\frac{\partial t}{\partial s_i} \Delta s_i + \frac{\partial t}{\partial a_j} \Delta a_j + \frac{\partial t}{\partial c_k} \Delta c_k + \frac{\partial t}{\partial g} \Delta g \simeq t_{\rm obs} - t_{\rm calc}(s_i, a_j, c_k, g)$$

depends on

- the astrometric parameters s_i of the star (*i*)
- the attitude parameters a_i for the relevant time interval (j)
- the calibration parameters c_k for the relevant CCD, FoV, etc (k)
- the global parameters g

Every observation carries information on some astrometric, attitude and calibration parameters

Conclusions

- The goal: an astrometric catalogue with **negligible systematic errors** (undistorted position/proper motion grid, absolute parallaxes)
- Measurements are **differential** w.r.t. the spinning instrument
- Astrometric accuracy on a global scale requires differential measurements over large angles (~ 90°)
- 1D measurements, basic angle, scanning law are carefully designed to allow self-calibration
- Self-calibration principle necessitates a **global reduction** of all the observations w.r.t. the astrometric, attitude and calibration parameters
- The entanglement of all data makes it a hard numerical problem
 but it also makes the solution strong!

Thank you!