

Looking Toward the Future: Testing New Concepts

Ralph Gaume U.S Naval Observatory

Introduction

- * This story begins with the Origins Billions Star Survey (OBSS) program
- * July 2004 USNO (K. Johnston, PI) funded (NASA) for 8 month mission concept development (One of 9 selected of 26 proposals)
- * Several versions of OBSS were discussed:
 - * Multi aperture, spinning/TDI
 - * Single aperture, step/stare
 - * Dedicated IR or radial velocity concept
- * Single aperture, step stare implementation was chosen for concept development

OBSS Mission Concept

* OBSS:

- Single Aperture 1.5m primary, TMA 50m Focal length
- * Two instruments:
 - Astrometric Instrument
 (AI) 1.2d FOV 1.2m
 Focal plane, 9 Gpixels
 - Low Resolution
 Spectroscopic
 Instrument (LRSI)
- * Operates at L2 5 yrs

- * JMAPS program evolved out of OBSS concept
- * Essentially, JMAPS is a micro-sat version of OBSS
- * Desire to test:
 - * New concepts and technologies
 - * Update the bright star catalog
- * Is JMAPS real, or is it just PowerPoint?

JMAPS Mission Objectives

- Update bright star catalog for 2015+ epoch
 - 1 mas-accuracy
 - 0.5 to 12th (I-band)
 - Reduced accuracy 12th to 14th
 - Astrometry referenced to
 ICRS
- High accuracy photometry
 - 1% goal

- Technology development
 and concept demonstration
 - Focal plane arrays
 - High accuracy SiC optics
 - Use of low res gratings for color sensing
 - 10 mas attitude sensing
 - 50 mas microsat pointing stability

Mission Parameters

- Primary VIS/NIR instrument

- 19 cm, f/20 SiC telescope
- 2x2 array of 4k x 4k CMOS-Hybrid FPA
- On-board processing electronics

Payload

- 3 year mission life - 900 km sun synchronous terminator orbit - Step-stare - 60 obs per star over mission life - 2013 launch

Bus - Based on SIV & STPSat-1 heritage - Avionics - Power - Solar panels, battery - Attitude Control System - Data storage (SSDR) - Comm system

- S-band & X-band

What is JMAPS ?

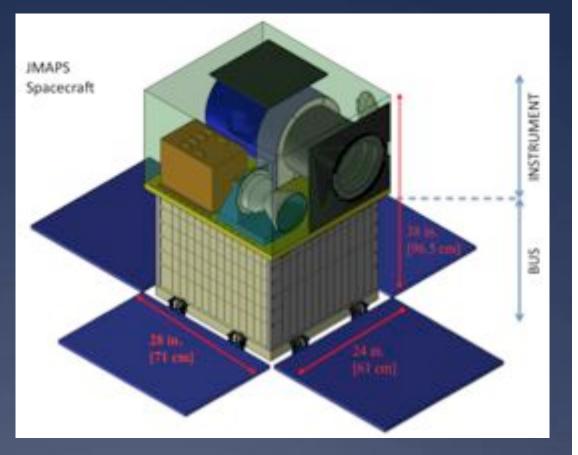
Comparison to Hipparcos

Hipparcos

- Two apertures
- Scanning
- "Complete" through 7th magnitude
- 3 years for proper motions
- HEO

JMAPS

- Single aperture
- Step-stare
- "Complete" through 14th magnitude
- 20 years for proper motions (using Hipparcos data)
- LEO/circular

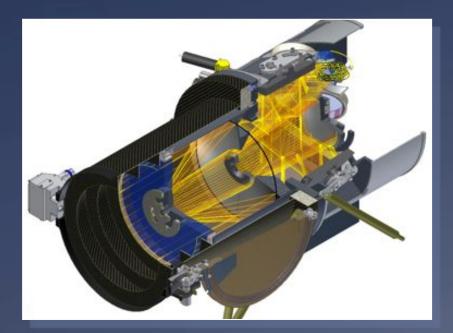

Spacecraft Overview

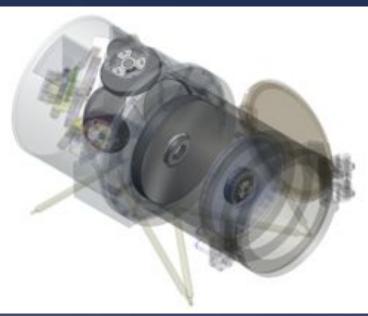
Small high-performance spacecraft bus

- Versatile design supports wide range of low earth orbit missions
- Bus mass: 101.5 kg plus
 17.8 kg (17.5%) allocated growth margin

Payload Accommodation

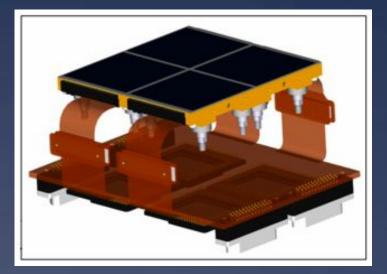
- Payload volume: 17.7-in.
 x 22-in. x 26-in.
- Payload mass: 32 kg with
 8.9kg (28%) allocated
 growth margin





JMAPS Optics

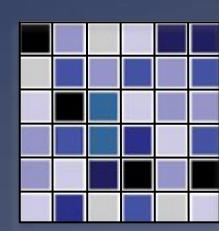
- Silicon Carbide (SiC)
 Design
 - Optical elements, metering structure, FPA housing, FPA packaging
 - Increased stiffness
 - Minimized CTE mismatches
 - Minimized thermal gradients


- 7.5" Primary (M1)
- f/20 focal ratio (3.8m FL)
- Length ~ 25"
- Baffled for stray light
- On-axis (9cm obstruction)
- Ultra-low distortion, WFE ~ $\lambda/20$ (@ HeNe)
- No spider
- Four rotating flats filter system
- Color sensing over range 450—900 nm

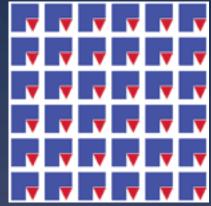
JMAPS Focal Plane

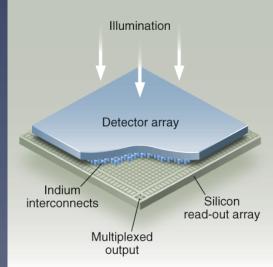
• 8k by 8K Focal Plane

- 2 x 2 array of TIS H4RG-10 CMOS-Hybrid detectors
- Development Status
 - First generation:
 - Testing Complete 2007
 - Second generation:
 - Testing Complete 2010
 - Third generation:
 - Delivery first parts in 2010
 - Third generation will produce flight units



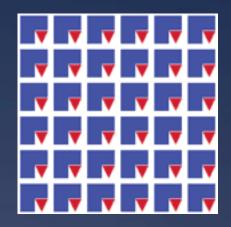
Detectors: CCDs, CMOS, CMOS-hybrid


CCD Device

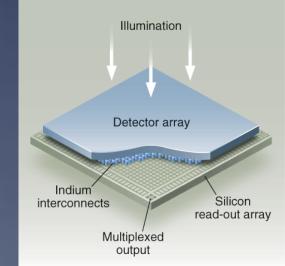

CCD Row shifts

CMOS Device Front side circuitry

CMOS hybrid Device Combines CCD with CMOS


Detectors: CCDs, CMOS, CMOS-hybrid

Strong reasons to use CMOS-Hybrids


- ROIC flexibility: windowing, random access read, reset, non-destructive read, etc.
- Radiation hardness

CMOS Device

Front side circuitry

CMOS hybrid Device Combines CCD with CMOS

JMAPS in 900 km Sun synchronous-terminator orbit

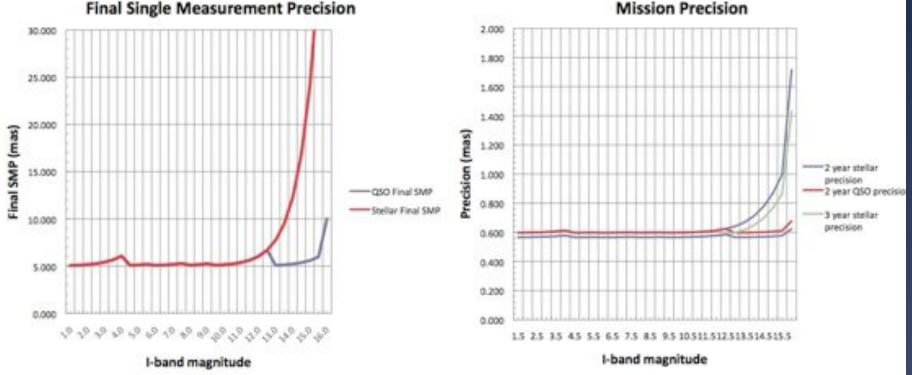
Sun

elocity

Bright star fields: 10 x 0.01 or 0.2 sec observations

1.2° x 1.2° FOV

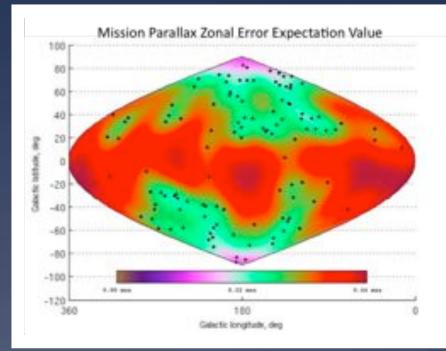
- > 100 stars per FOV (avg)
- ~10 guide stars per FOV (~10^m)
- $t_{int} = 1, 4.5, 20$ seconds
- 30 sec per field


vear mission

- Four-fold overlap
- **Tie-down to QSOs and extragalactic objects**
- 40—60 observations per star over 2—3

Predicted Performance

Final Single Measurement Precision


Astrometric Mission Requirement: (1 mas) is achieved through multiple observations of individual stars throughout the lifetime of the mission

JMAPS Zonal Parallax Errors

Hennessy & Makarov

- JMAPS single aperture astrometry more susceptible to zonal errors
- Simulation utilize ~115 bright quasars to force parallax to zero
- Results 0.2-0.3 mas parallax
 error
- Global block adjustment
 solution simulations underway
 - Utilize quasars as zero parallax, zero proper motion sources
 - Observe visible wavelength counterpart to ~20 ICRF sources to facilitate ICRF link.

JMAPS Rollup

- JMAPS is a bright star space astrometry mission to launch in 2013
- JMAPS develops and demonstrates new space technology
 - CMOS-Hybrid Focal plane, attitude sensing, microsat pointing stability
- JMAPS development on-going at USNO & NRL
 - USNO responsible for astrometric requirements, ground data-processing and catalog production
- JMAPS launch 2013, catalog delivery 2017

