A new kinematic survey (from SDSS-DR7 & GSC-II) to search for fossil records in the Milky Way

Paola Re Fiorentin

University of Ljubljana. Department of Mathemathics and Physics INAF-OATo. Osservatorio Astronomico di Torino

Univerza v Ljubljani

Gaia: at the frontiers of Astrometry @ Sevres - 9 June 2010

The beginning...

To determine the intrinsic properties of individual objects observed by Galactic Surveys (e.g., RAVE and SDSS)

- ★ discrete source classification
 - \rightsquigarrow star, binary, etc.
 - \rightsquigarrow identification of new types of objects
- ★ (stellar) astrophysical parameter estimation
 - \rightarrow T_{eff}, log g, [Fe/H], ([α /Fe], V_{rot}, A_V,...)
- ★ learning from (astronomical) data, e.g. spectra: kNN, ANN, SVM, PCA

\hookrightarrow Catalog with astrophysical information (e.g. A new kinematic survey!)

Thank to: Tomaž Zwitter & RAVE Collaboration; Coryn Bailer-Jones & CU8, Tim Beers & SEGUE Collaboration; B. Bucciarelli, R.E. Drimmel, M.G. Lattanzi, R.L. Smart, A. Spagna (OATo team)

Galactic Surveys

★ SDSS-II/SEGUE: The Sloan Digital Sky Survey

northern hemisphere, one-quarter of the sky in 2008 (CCD camera on the 2.5-m telescope on Apache Point, New Mexico)

- → 11663 deg² of imaging data (position and multicolor photometry, 14.0 $\leq g \leq$ 20.5) of ~ 357 million stars; including data (3500 deg²) at lower Galactic latitudes ($|b| < 40^{\circ}$),
- \rightarrow Spectra ($\lambda\lambda$ 3850–9000 Å) with R=2000 for approximately \sim 300 000 Galactic stars,
- \rightarrow Radial velocities with typical accuracy of 10 km s⁻¹.

★ RAVE: The RAdial Velocity Experiment

southern hemisphere, ~ 1 million bright stars by 2010 (6dF multi-object spectrograph on the 1.2-m UK Schmidt Telescope of the Anglo-Australian Observatory)

- → Spectra ($\lambda\lambda$ 8410–8795 Å) with R=7500 for approximately ~ 350000 Galactic stars off the Milky Way plane ($|b| > 25^{\circ}$),
- \rightarrow Radial velocities accuracy better than 2 km s⁻¹ (RV: $\pm 50 k / \sim 150 k$; APs: $\pm 25 k / \sim 100 k$),
- \rightsquigarrow cross-identification with photometric (9 $\leq I \leq$ 12) and astrometric catalogues.

Dimensionality reduction: Principal Components Analysis

Represent a set of N(788)-dimensional data (\mathbf{x}_p) by means of their projection (a_{kp}) onto a set of r < N optimally defined axes (\mathbf{u}_k) .

3

Constructing RAVE spectra by projection onto the synthetic PCs

Constructing RAVE spectra by projection onto the synthetic PCs

RAVE spectra. Zooming in around CaII triplet, color coded lines indicate the number of eigenvectors used to reconstruct the spectrum.

In this talk...

- ★ What do we do? A new wide field kinematic survey
 - * ingredients: survey/data base (SDSS, GSC-II)
 - ★ preparation:
 - → proper motions (calculation & precision/accuracy)
 - \rightarrow astrophysical parameter estimation (e.g. T_{eff} , log g, [Fe/H] & validation/improvement)
 - \rightsquigarrow distance...plus RV: phase-space!
 - ★ 6D -> 7D (9D)
- ★ Where do we go from here? Exploiting the results...
 - * Define & describe (kinematic & chemical properties) new samples of stellar tracers for Galactic investigations
 - * Kinematic & chemical analysis: search for fossil records in the Milky Way

Surveys of galactic stellar populations: basic ingredients

• ... Crucial points!

- → identification of stellar populations (Halo, Disk);
- → investigation of methods for estimating stellar parameters from photometric and spectroscopic data, e.g. [Fe/H];
- → distance estimate: e.g. photometric, trigonometric;
- → combination of astrometric data, in order to derive velocities and remove degeneracies;

Illustrative summary of the primary Gaia scientific goals, superimposed on the Lund map of the MW and Local Group galaxies. From Gilmore et al. 1998, SPIE 3350, 541

→ large samples of astrometric and spectro-photometric data: e.g. GSC-II, SDSS-I, & SDSS-II/SEGUE (SDSS-III/SEGUE), RAVE, Gaia (spring 2012).

The Sloan Digital Sky Survey

★ SDSS-I & SDSS-II/SEGUE (DR7)-> III

northern hemisphere, one-quarter of the sky (CCD camera on the 2.5-m telescope on Apache Point, New Mexico)

- → 11663 deg² of imaging data (position and multicolor photometry, 14.0 $\leq g \leq$ 20.5) of ~ 357 million stars; including data (3500 deg²) at lower Galactic latitudes ($|b| < 40^{\circ}$),
- \rightarrow Spectra ($\lambda\lambda$ 3850–9000 Å) with R=2000 for approximately \sim 300 000 Galactic stars,
- \rightarrow Radial velocities with typical accuracy of 10 km s⁻¹.

e.g., Abazajian+2008, ApJS 175, 297; Abazajian+2009, ApJ in press; Yanny+2009, AJ 137, 4377

The Second Guide Star Catalog

★ GSC-II (OATo & STScI)

- → All-sky database, compiled from Schmidt plate surveys (AAO, POSS-I and POSS-II), from which the GSC 2.2 (2001) and GSC 2.3 (2007) have been exported.
- \sim ~ 1 billion objects down to $B_J < 22.5, R_F < 20.5$ and $I_N < 19.5$.
- \rightarrow Multi-epoch positions (0.2–0.3" accuracy) and multicolor photographic photometry (0.15–0.20 mag accuracy).
- → Object Classification.

Proper motions - I

Spagna et al. 1996, A&A 311, 758

- ★ Multi-epoch positions from SDSS and GSC-II (mainly POSS-I and POSS-II) available in the GSC-II DB mirror in Torino
- ★ Database structure: HEALPix tesselation level 6, i.e. 49152 regions (0.839 deg²)
- ★ Transformations from (X, Y) plate coordinates to standard coordinates (ξ, η) computed for HEALPix level 7 (27'x27')
- ★ Relative proper motions
- ★ Absolute proper motions computed with zero-point derived from extra-galactic sources (SDSS classification adopted)

Proper motions - I

Spagna et al. 1996, A&A 311, 758

- ★ Multi-epoch positions from SDSS and GSC-II (mainly POSS-I and POSS-II) available in the GSC-II DB mirror in Torino
- ★ Database structure: HEALPix tesselation level 6, i.e. 49152 regions (0.839 deg²)
- ★ Transformations from (X, Y) plate coordinates to standard coordinates (ξ, η) computed for HEALPix level 7 (27'×27')

★ Relative proper motions

Absolute proper motions computed with zero-point derived from extra-galactic sources (SDSS classification adopted)

Proper motions - II

- ★ Proper motion formal errors $\sigma(\mu) = 2 3$ mas/yr
- ★ Proper motion accuracy
 235 QSOs ▷ galactic anticenter:
 - * GSC-II catalog

$$ightarrow < \mu_{lpha\cos\delta} > = 0.13 \pm 0.20$$
 mas/yr

$$\rightarrow < \mu_{\delta} >= 0.10 \pm 0.18$$
 mas/yr

$$\rightarrow \sigma(\mu_{\alpha}\cos\delta) = 3.0 \text{ mas/yr}$$

$$\rightarrow \sigma(\mu_{\delta}) = 2.7 \text{ mas/yr}$$

* Munn's catalog

- \rightsquigarrow < $\mu_{\alpha \cos \delta}$ >= 0.07 ± 0.29 mas/yr
- \rightarrow < μ_{δ} >= 1.07 ± 0.31 mas/yr

$$\rightarrow \sigma(\mu_{\alpha \cos \delta}) = 4.5 \text{ mas/yr}$$

 $\rightsquigarrow \sigma(\mu_{\delta}) = 4.8 \text{ mas/yr}$

Proper motions - III

\star Proper motion accuracy, test based on ~ 80000 QSOs:

g	$<\mu_{lpha}\cos\delta>$ GSC-II	Munn	$\sigma(\mu_lpha\cos\delta) \ { m GSC-II}$	Munn	$<\mu_{\delta}>$ GSC-II	Munn	$\sigma(\mu_{\delta})$ GSC-II	Munn
14 15 16 17 18 19 20 21	$\begin{array}{c} 0.20 \pm 0.60 \\ 0.20 \pm 0.19 \\ -0.20 \pm 0.08 \\ -0.30 \pm 0.04 \\ -0.10 \pm 0.02 \\ -0.10 \pm 0.03 \\ -0.30 \pm 0.08 \\ \mathrm{mas/yr} \end{array}$	$\begin{array}{c} -1.90 \pm 0.53 \\ -0.90 \pm 0.25 \\ -0.20 \pm 0.10 \\ 0.20 \pm 0.04 \\ 0.30 \pm 0.02 \\ 0.30 \pm 0.03 \\ 0.00 \pm 0.07 \\ mas/yr \end{array}$	5.04 3.28 2.92 2.86 3.43 4.83 6.61 mas/yr	4.34 4.33 3.69 3.25 3.37 4.36 6.18 mas/yr	$ \begin{array}{c} -0.30 \pm 0.57 \\ -0.10 \pm 0.20 \\ -0.30 \pm 0.08 \\ -0.30 \pm 0.04 \\ 0.10 \pm 0.02 \\ 0.00 \pm 0.03 \\ 0.10 \pm 0.08 \\ \text{mas/yr} \end{array} $	$\begin{array}{c} -0.20 \pm 0.78 \\ 1.20 \pm 0.27 \\ 0.50 \pm 0.10 \\ 0.20 \pm 0.04 \\ 0.20 \pm 0.02 \\ 0.00 \pm 0.03 \\ 0.00 \pm 0.07 \\ mas/yr \end{array}$	4.83 3.56 2.95 2.96 3.56 4.90 6.59 mas/yr	6.35 4.61 3.60 3.23 3.39 4.43 6.17 mas/yr

Sky distribution of the quasars found in the GSC2.3 catalog. The highest density region marks the SDSS contribution. The scale represents the number of sources in regions of 9 deg^2 shown on the plots.

Andrei et al. 2009, A&A, in press

Proper motions - III

\star Proper motion accuracy, test based on ~ 80000 QSOs:

g	$<\mu_{lpha}\cos\delta>$		$\sigma(\mu_{lpha}\cos\delta)$		$<\mu_{\delta}>$		$\sigma(\mu_{\delta})$	
	GSC-II	Munn	GSC-II	Munn	GSC-II	Munn	GSC-II	Munn
14	0.20 ± 0.60	-1.90 ± 0.53	5.04	4.34	$ -0.30\pm0.57$	-0.20 ± 0.78	4.83	6.35
15	0.20 ± 0.19	-0.90 ± 0.25	3.28	4.33	-0.10 ± 0.20	1.20 ± 0.27	3.56	4.61
16	-0.20 ± 0.08	-0.20 ± 0.10	2.92	3.69	-0.30 ± 0.08	0.50 ± 0.10	2.95	3.60
17	-0.30 ± 0.04	0.20 ± 0.04	2.86	3.25	-0.30 ± 0.04	0.20 ± 0.04	2.96	3.23
18	-0.10 ± 0.02	0.30 ± 0.02	3.43	3.37	0.10 ± 0.02	0.20 ± 0.02	3.56	3.39
19	-0.10 ± 0.03	0.30 ± 0.03	4.83	4.36	0.00 ± 0.03	0.00 ± 0.03	4.90	4.43
20	-0.30 ± 0.08	0.00 ± 0.07	6.61	6.18	0.10 ± 0.08	0.00 ± 0.07	6.59	6.17
21	mas/yr	mas/yr	mas/yr	mas/yr	mas/yr	mas/yr	mas/yr	mas/yr

Sky distribution of the quasars found in the GSC2.3 catalog. The highest density region marks the SDSS contribution. The scale represents the number of sources in regions of 9 deg^2 shown on the pl ots.

Andrei et al. 2009, A&A, in press

Stellar astrophysical parameters (e.g. T_{eff} , log g, [Fe/H])

★ SSPP - Methodology

- SDSS pipeline (SSPP)
 Lee et al. 2008, AJ 136, 2022
 Supervised feedforward neural netwo
- * Supervised feedforward neural network (ANN)
 - Re Fiorentin et al. 2007, A&A 467, 1374

★ SSPP - Precision

 \star 4500 K $< T_{\rm eff} <$ 7500 K, SNR>15:

 $\sigma(T_{\rm eff}) = 150$ K, $\sigma(\log g) = 0.25$ dex, $\sigma([{\rm Fe}/{\rm H}]) = 0.20$ dex

- * over 125 F,G stars (HET spectra, high quality): $\sigma(T_{\text{eff}}) = 130$ K, $\sigma(\log g) = 0.21$ dex, $\sigma([\text{Fe}/\text{H}]) = 0.11$ dex
- * over G;OC (M13,M15,M2; NGC2420,M67):

 $\sigma(T_{
m eff}) < 200$ K, $\sigma(\log g) \le 0.40$ dex

(e.g. Allende Prieto et al. 2008, AJ 136, 2070; Lee et al. 2008, AJ 136, 2050)

Stellar astrophysical parameters

Precision/Accuracy improved by further development of ANN, improved stellar models, better data calibration... (e.g. Re Fiorentin et al. 2008, AIPC 1082, 76)

Accuracy estimate: $E = \frac{1}{P} \sum_{p=1}^{P} |C(p) - T(p)|$

Model	log $T_{\rm eff}$	$E_{\log g}$	$E_{\rm [Fe/H]}$
RR	0.0058	0.11	0.0879
SR	0.0083	0.3105	0.2456

<u>currently</u>	y SNR	>10;	and	lower?
SNR	T_{eff}	$E_{\log g}$	$E_{[F]}$	Fe/H]
10 5 1	0.68% 0.93% 2.04%	0.1591 0.1897 0.3280	0.1 0.1 0.2	040 312 766

Photometric distances

Method:

- 1. Magnitude correction: extinction maps by Schlegel et al. (1998)
- 2. Photometric parallax: absolute magnitude by Ivezic et al. (2008), calibrated for FGK (sub)dwarfs with [Fe/H] < -0.5

$$M_r(g-i, [\mathsf{Fe}/\mathsf{H}]) = M_r^0(g-i) + \Delta M_r([\mathsf{Fe}/\mathsf{H}])$$

Schlegel et al. 1998, ApJ 500, 525; Ivezic et al. 2008, AJ 684, 287

SDSS-GSC-II catalog

* Area: 9000 deg²

	# Objects	<i>ugriz</i> mag	(μ_lpha,μ_δ) mas/yr	$T_{ m eff}$ K	log g dex	[Fe/H] dex	RV km/s	d kpc	UVW km/s
*	77 000 000 150 000 27 000*	× × ×	× × ×	X X	× ×	× ×	× ×	X	X

***** FGK dwarfs, kinematic sample:

- \rightsquigarrow 4500 K $< T_{\rm eff} <$ 7500 K, log $\,g >$ 3.5 dex,
- → [Fe/H] < -0.5 dex, d < 3 kpc

Evidence of a thick disk rotation-metallicity correlation: $dV_{\phi}/dz \sim 40-50$ km/s per dex

 V_{ϕ} vs [Fe/H]. Stars with |z| = 1.0 - 3.0 kpc and [Fe/H] < -0.3. Dashed line is the thick disk rotation, 173 km/s. The box defines the region in which the thick disk population dominates.

Zooming, iso-density contours. Ridge line of the maximum likelihood marked.

$\langle z \rangle$ (kpc)	N _{tot}	$N_{\rm used}$	$\partial \langle V_{\phi} \rangle / \partial [\text{Fe/H}]$ (km s ⁻¹ dex ⁻¹)	ρ_s (×10 ⁻²)
		3σ 2σ	3σ 2σ	3σ 2σ
1.23	3994	3672 2915	$50 \pm 5 39 \pm 5$	$17 \pm 2 15 \pm 2$
1.73	2641	2348 1715	$54 \pm 6 35 \pm 5$	$18 \pm 2 16 \pm 2$
2.37	2194	1768 1131	$35 \pm 8 33 \pm 5$	$10 \pm 2 14 \pm 3$

Kinematics-metallicity correlation of thick disk stars with -1.0 < [Fe/H] < -0.5 @ height intervals.

(see poster, Spagna et al. 2010)

 \star -1.0 < [Fe/H] < -0.5

★ -1.5 < [Fe/H] < -1.0

★ -2.0 < [Fe/H] < -1.5

★ [Fe/H] < -2.0

★ -2.0 < [Fe/H] < -1.5

★ [Fe/H] < -2.0

★ -2.0 < [Fe/H] < -1.5

★ [Fe/H] < -2.0

How can we quantify such substructures?

★ Two-Point Correlation function

Clustering method for uncovering (new) structures in data sets

$$\xi = \frac{\langle DD \rangle}{\langle RR \rangle} - 1$$

< DD > number of pairs of particles in our data with velocity difference less than a given value

< RR > number of pairs of random particles with velocity difference less than *that* given value

 \star ξ measure the excess of pairs of stars moving with given velocity difference, above that expected from a random sample.

Kinematic substructures

Distribution of the halo subsample (3337 stars with [Fe/H] < -1.5 and d < 3 kpc). The 5% fastest are highlighted (circles). Among them, the crosses identify groups with velocity difference less than 42 km/s. The box shows the locus of the halo stream discovered by Helmi et al. 1999.

Summary

Objective: A new kinematic survey from SDSS-DR7 & GSC-II

- ★ We have produced a new proper motion survey covering 9000 deg² based on the multi-epoch positions derived SDSS-DR7 combined with the plate material from the GSC-II database.
- ★ Accurate absolute proper motions (μ_{α} , μ_{δ}) have been computed for 40 million sources down to magnitude $g \sim 22$ ($r \sim 20$). Proper motions errors attain 2-3 mas/yr.
- ★ Stellar astrophysical parameters (T_{eff} , log g, [Fe/H]) have been (re)estimated for the SDSS spectroscopic sample by means of updated ANN models.
- ★ Full astrometric, photometric, and spectroscopic measurements are available for 150 000 stars.
- ★ Photometric distances and 3D velocities (UVW) have been computed for FGK (sub)dwarfs with [Fe/H] < -0.5.
- ★ A kinematic sample of 30 700 tracers within 3 kpc from the Sun has been extracted and will be used to
 - → study the kinematic properties of the thick disk and inner halo:
 - → search for members of known/new kinematic substructures produced by past mering events.

 \leftrightarrow to study the kinematic and chemical properties of stellar populations and to search for fossil records in the Milky Way