

Solar System science: Gaia in the 2015->2020 context

P. Tanga, F. Mignard Observatoire de la Côte d'Azur

Paolo Tanga

Peculiar properties of SSOs

- Expected Gaia science
- Role of Gaia data

M. Delbo'

Asteroid Science

- Main issues:
 - Origin: collisional life, related physics
 - Dynamical processes:

- transport, mixing in the primitive nebula, origin of meteorites
- Impact risks and mitigation strategy
- Main problems: lack of basic data
 - density, porosity...
 - Spectral types and connection to composition
 - Shapes, satellites
 - Size distribution

How much is / will be known

Property	today	Gaia
astrometry	~ 0"5	
rotation periods	1000	
shapes, poles	100	
spectral type	~ 1800	
masses, σ < 60%	~ 40	
size , σ < 10%	~ 500	
satellites	~ 20 (MBA)	

Discovery potential and follow-up

Observable region on the ecliptic plane

- ~ 70 detections/ 5 years for Main Belt asteroids
- Discovery space:
 - Low elongations
 (~45-60°)
 - Inner Earth Objects (~unknown)
 - Other NEOs

Velocity distribution

simulation on 5,000 objects

 main-belt, NEOs

 motion detectable
 over 1 transit

σ ~ 7 mas/s

CU4 : two pipelines for SSO

Input data: sources not matched by IDT

Short-term (daily) processing

- Shortest timescale available
- Fast processing of astrometry
- Aims: <u>identification</u> of new of poorly known objects → diffusion of predictions to a network (DU459) and positions to the Minor Planet Center

Long term processing

- Best accuracy
- Complex object model (shapes, motion,...), best astrometric solution, all effects taken into account
- Aims: intermediate \rightarrow final data releases

Astrometry \rightarrow orbit refinement

Paolo Tanga, Sèvres 2010

- Orbit reconstruction from simulated data
 - point sources & gravitational interaction
 - solar system perturbations

Mouret at al.

Photometry → Shapes

- Asteroid's magnitude function of:
 - shape, rotation period, direction of spin axis
- Direct problem:
 - model of light curves for different shapes and rotation
- Inverse problem:
 - find the rotation parameters from photometric data
 - strongly non linear
- Choice for Gaia:
 - Three-axial ellipsoids

Simulated Gaia photometry

A. Cellino, P. Tanga, M. Delbo

Paolo Tanga, Sèvres 2010

Inversion limits

Ellipsoidal model inversion

A. Cellino, P. Tanga

Size of the asteroids

4.10 3·104 Counts $\theta \sim 100$ mas 2•10⁴ 1.104 $\theta \sim 300 \text{ mas}$ 5 10 0 Pixels

Basic images for different source diameter

15

- Direct size determination for over 0 1000 asteroids
- Good quality sizes for D>40km 0
- Object's size at different epochs 0 \rightarrow overall shape
- **Binarity** 0

RP/BP → Taxonomic classification

- Taxonomy classifies asteroids on the basis of visible and near-IR reflectance spectroscopy
 - Based on ~1000 objects today
- Gaia special features:
 - High solar elongation
 - Blue spectrum coverage
 - Several "bands"
 - → Preliminary investigation on earth-based observations
- Limitations

– …no albedo → ambiguity E,M,P…

 automatic classifier developed for Gaia
 → Gaia taxonomy

Paolo Tanga, Sèvres 2010

Science goals : summary

- Systematic survey down to 20 mag ~ 3x10⁵ objects
 - Main belt
 - NEOs
- Orbits : virtually all object observed x30 better than now higher resolution of dynamical families
- Masses from close encounters ~ 100 masses expected
- Diameter for over 1000 asteroids : shape, density
- Binary asteroids
- Photometric data in several bands : albedo, taxonomic classification
- Light curves over 5 years : rotation, pole, shape
- Space distribution vs. physical properties
- Perihelion precession for 300 planets : GR testing, solar J2

Next generation Earth-based surveys for dynamical and physical characterization

- Panoramic Survey Telescope & Rapid Response System (Pan-STARRS)
- Large Synoptic Survey Telescope (LSST)
- Wide-Infrared Survey Explorer (& Spitzer)

Dangers from space

Learn about the threat to Earth from asteroids & comets and how the Pan-STARRS project is designed to help detect these NEOs. Learn more...

1,400,000,000 pixels

Pan-STARRS has the world's largest digital cameras.

Read about them here...

The PS1 Prototype

PS1 discovers its first supernova!

PS1 consortium formed...

More about PS1 here...

Zoomable images from PS1

bservatoire

Paolo Tanga, Sèvres 2010

Survey details

• Pan-STARRS (PS1 – 2010 ??...)*

- V = 24, 5 Sloan bands σ ~63 mas + parallaxes whole sky 4 /month
- 100,000 Jupiter Trojans (2900 now), 20,000 Kuiper belt objects (800)
- PS1 operated from March to September 2009: 4000 asteroids, 7 new
- Automated analysis and extraction of transient sources
- − Plans for photometric inversion → « complex » shapes

• LSST (2015...)*

- V=24, 6 bands σ ~9 mas + parallaxes whole sky 8 /month
- 30 TB each night, immediately public
- Plans for NEO search not yet clear for other aims

• WISE (under way)

- 4 bands (3.3 23 μ m), 1000 x IRAS sensitivity (1983)
- <10 observations for 100,000 asteroids</p>

....also SPITZER (more objects, lower precision)

 \rightarrow albedos

)bservatoire

Gaia and the others...

Gaia

Pan-STARRS, LSST

SSO orbit accuracy coverage at small elongation spectro-photometry resolution photometric accuracy Higher number of observations
→ Complex shapes
Smaller objects accessible
Longer operation

Gaia is not said to save mankind from extinction...

...but could give a contribution on specific asteroids!

Paolo Tanga, Sèvres 2010

Gaia & WISE

- Thermal observations → surface temperature of a SSO
 - Thermo physical model are based on a knowledge of shape
 - No shape model → larger size uncertainty (30% common)
- Complementarity:
 - Gaia asteroid sample about the same size
 - Gaia shapes parameters can be used for thermal modeling

\rightarrow Size inventory in a "global" solution

Conclusions

- Gaia is an impressive tool for Solar System science
- Complementary in several aspects of other surveys
 - Better astrometric accuracy
 - Smaller solar elongation
 - Great support to WISE observations of about the same population of objects
- Open problems in photometry inversion
 - Space based data more accurate (?)
 - Which difference in practical use of different shape models (ellipsoid vs compex) ?

Copyright (C) 2005, by Fahad Sulehria, http://www.novacelestia.com. All Rights Reserved

