

New perspectives in stellar physics: GAIA in the 2015 context

Yveline Lebreton GEPI, Paris Observatory

Yveline Lebreton

macroscopic: convection, rotation internal waves magnetic field & related transport

BOUNDARIES model atmospheres

Yveline Lebreton

LMJ, LUNA etc.

Opacities: progress is going on since 1990...

Opacities: progress is going on since 1990...

bound-bound and bound free opacities: millions of lines included

- interior: OPAL and OP data tables
- envelope/atmosphere: Wichita data tables, including molecules, grains

Badnell et al. 05, Iglesias Rogers 96, Ferguson et al. 04

Yveline Lebreton

Opacities: progress is going on since 1990...

bound-bound and bound free opacities: millions of lines included

- interior: OPAL and OP data tables
- envelope/atmosphere: Wichita data tables, including molecules, grains

Badnell et al. 05, Iglesias Rogers 96, Ferguson et al. 04Yveline LebretonGAIA-ELSA Conf., Sèvres, France, 10 June 2010

Initial abundances: the solar mixture

Grevesse & Noels 93, Grevesse & Sauval 1998, Asplund et al. 05, Asplund & al 09, Lodders et al. 09, Caffau et al 10

Yveline Lebreton

Initial abundances: the solar mixture

1993-2010: several revisions of the photospheric solar mixture 2003: 3D model atmospheres + NLTE effects + improved atomic data decrease of C, N, O, Ne, Ar and (Z/X)

	GN93	GS98	AGS05	AGS09	Lod09	Caff10
Z/X	0.0245	0.0229	0.0165	0.0181	0.0191	0.0209

Grevesse & Noels 93, Grevesse & Sauval 1998, Asplund et al. 05, Asplund & al 09, Lodders et al. 09, Caffau et al 10

Initial abundances: the solar mixture

1993-2010: several revisions of the photospheric solar mixture 2003: 3D model atmospheres + NLTE effects + improved atomic data decrease of C, N, O, Ne, Ar and (Z/X)

	GN93	GS98	AGS05	AGS09	Lod09	Caff10
Z/X	0.0245	0.0229	0.0165	0.0181	0.0191	0.0209

Grevesse & Noels 93, Grevesse & Sauval 1998, Asplund et al. 05, Asplund & al 09, Lodders et al. 09, Caffau et al 10

Yveline Lebreton

Yveline Lebreton

Yveline Lebreton

Opacities: the future

Bailey et al. 07, Moses et al. 09

Yveline Lebreton

Opacities: the future

2010-2015: high-energy-density devices
intense lasers, Z-pinches: NIF (March 2009), LMJ, ...

direct measurements at T \geq 10⁸ K ; $\rho \approx$ 10³ g.cm⁻³

Bailey et al. 07, Moses et al. 09

reaction cross section:

$$\sigma(E) = \underbrace{\frac{S(E)}{E}}_{E} \exp(-2\pi\eta)$$
astrophysical factor (S-factor)

in stars: reactions occur at low energy: few keV to 0.1 MeV

rates from:

experimental data but to be extrapolated to low E

theory

Yveline Lebreton

recent significant progress in laboratory and theory
 S-factor + screening + extrapolation to the Gamow peak

recent significant progress in laboratory and theory
 S-factor + screening + extrapolation to the Gamow peak

recent significant progress in laboratory and theory
 S-factor + screening + extrapolation to the Gamow peak

FUTURE

high-energy-density facilities: lasers, Z-pinches \Rightarrow measurements at stellar conditions!

Yveline Lebreton

Adelberger et al. 2010

Yveline Lebreton

18, 2010

Adelberger et al. 2010

Yveline Lebreton

theoretical estimate only
but helioseismic validation

rate constrained to ±15%

Yveline Lebreton

Adelberger et al. 2010

Yveline Lebreton

¹⁴N(p,γ)¹⁵O burning reaction rate

CNO cycle efficiency is reduced (Sun: E_{CNO}/E_{TOT}= 0.8% vs.1.6% before)

¹⁴N(p,γ)¹⁵O burning reaction rate

CNO cycle efficiency is reduced (Sun: E_{CNO}/E_{TOT}= 0.8% vs.1.6% before)

Yveline Lebreton

¹⁴N(p,γ)¹⁵O burning reaction rate

CNO cycle efficiency is reduced (Sun: ECNO/ETOT= 0.8% vs.1.6% before)

Yveline Lebreton

Asteroseismology: diagnostics all across the HR diagram

Asteroseismology: diagnostics all across the HR diagram

Asteroseismology: diagnostics all across the HR diagram

Kjeldsen & Bedding, 1995

Yveline Lebreton

Kjeldsen & Bedding, 1995

Yveline Lebreton

Kjeldsen & Bedding, 1995

Yveline Lebreton

Kjeldsen & Bedding, 1995

Yveline Lebreton

$$\Delta \nu = (M/M_{\odot})^{1/2} (R/R_{\odot})^{-3/2} \times 134.9 \ \mu \text{Hz}$$

Kjeldsen & Bedding, 1995

Yveline Lebreton

Yveline Lebreton

Christensen-Dalsgaard 88, 93

Yveline Lebreton

Asteroseismology: stellar populations CoRoT, Kepler: solar-like oscillations in large samples of red grants **CoRoT** $\nu_{\rm max} = \frac{M/M_{\odot}}{\left(T_{\rm eff}/5777\right)^{1/2} \left(R/R_{\odot}\right)^2} \times 3.05 \text{ mHz}$ 100 z LRc01 50 0 **also** $\Delta \nu = (M/M_{\odot})^{1/2} (R/R_{\odot})^{-3/2} \times 134.9 \ \mu \text{Hz}$ 20 60 80 100 40 120 0 ν_{max} (µHz)

Population synthesis: CoRoT field

Miglio et al 2009

Yveline Lebreton

CoRoT, Kepler: solar-like oscillations in large samples of reagants

Population synthesis: CoRoT field

CoRoT, Kepler: solar-like oscillations in large samples of reagants

Population synthesis: CoRoT field

CoRoT, Kepler: solar-like oscillations in large samples of reagants

Population synthesis: CoRoT field

Exoplanets hosts

Exoplanets hosts

Transit: $M_{STAR}^{1/3}/R_{STAR}$, $R_{PLANET}/R_{STAR} > accuracy 10^{-3}$ (CoRoT, Kepler) Radial velocity: $M_{PLANET}^2/M_{STAR}^3 > accuracy$: a few m.s⁻¹ (Harps) Spectroscopy: T_{eff} , log g, Fe/H > still rather inaccurate Astrometry, photometry: distance, luminosity > presently unavailable

Exoplanets hosts

Transit: M_{STAR}^{1/3}/R_{STAR}, R_{PLANET}/R_{STAR} > accuracy 10⁻³ (CoRoT, Kepler) Radial velocity: M_{PLANET}²/M_{STAR}³ > accuracy: a few m.s⁻¹ (Harps) Spectroscopy: T_{eff}, log g, Fe/H > still rather inaccurate Astrometry, photometry: distance, luminosity > presently unavailable

GAIA + high resolution spectroscopy (radius) + PLATO (sismo: physics understanding)

From 2010 to 2015 and beyond

1D stellar models:

• further improvements in the physics and boundaries (atmospheres)

validation of numerics

2 and 3D stellar models: currently under development

Observational constraints:

- global data will be improved: GAIA, VLT-I, TMT & ELT, JWST... distance, luminosity, effective temperature, abundances, gravity mass, radius
- oscillations: CoRoT 2007-12, Kepler 2009-14, Plato 2017-23 individual frequencies but also amplitudes, lifetimes statistics: ν_{max}; Δν increased number of stars (150 000 to 500 000) longer duration of observations (150 d to 5 yr)

New diagnostics are expected

Yveline Lebreton