Gaia: Perspectives for determining stellar surface parameters

H.-G. Ludwig

ZAH – Landessternwarte, Heidelberg

Overview

- Interplay between determination of stellar atmospheric parameters and development of model atmospheres in the light of Gaia
 - \checkmark effective temperature $T_{\rm eff}$
 - surface gravity $\log g$
 - chemical abundances
 - leaving out: rotational velocity
- Application of model atmospheres play a role on many levels of Gaia data analysis
 - e.g., libraries of stellar spectra
 - stellar atmospheres well developed theoretical tool
- Accurate observational constraints necessary to make model shortcomings apparent
- HIPPARCOS based results and stories from own projects

BIPM ideas of accuracy ...

Conclusions

- Gaia will sharpen the constraints model atmospheres have to fulfill
- Desirable improvements on the stellar T_{eff} scale demand for new discoveries which Gaia will likely make and accompanying observational and theoretical efforts
- Gaia can help to provide non-standard observables of particular interest to 3D model atmospheres

Personal bias

Salar Granulation: d3gt57g44n94

Intensity & specific entropy Time= 331.8 min

dirms: 15.2 %

Modellist, cool stars, development of 3D hydrodynamical model

- stellar abundance work, Sun, metal-poor stars
- Member of CU6, WP on radial velocity zero point definition

CIFIST 3D model atmosphere grid

(Ludwig, Caffau, Steffen, Freytag, Bonifacio, Kučinskas, 2009)

Solar 3D abundances in comparison

EL	N	Caffau et al.	AG89	GS98	AGS05	AGSS09
Li	1	1.02 ± 0.02	1.16 ± 0.10	1.10 ± 0.10	1.05 ± 0.10	1.05 ± 0.10
C	43	8.50 ± 0.11	8.56 ± 0.04	8.52 ± 0.06	8.39 ± 0.05	8.43 ± 0.05
N	12	7.86 ± 0.12	8.05 ± 0.04	7.92 ± 0.06	7.78 ± 0.06	7.83 ± 0.05
0	10	8.76 ± 0.07	8.93 ± 0.035	8.83 ± 0.06	8.66 ± 0.05	$\underline{8.69\pm0.05}$
P	5	$\overline{5.46\pm0.04}$	5.45 ± 0.04	5.45 ± 0.04	5.36 ± 0.04	$\overline{5.41 \pm 0.03}$
S	9	7.15 ± 0.06	7.21 ± 0.06	7.33 ± 0.11	7.14 ± 0.05	7.12 ± 0.03
Eu	5	0.52 ± 0.03	0.51 ± 0.08	0.51 ± 0.08	0.52 ± 0.06	0.52 ± 0.04
Hf	4	0.87 ± 0.04	0.88 ± 0.08	0.88 ± 0.08	0.88 ± 0.08	0.85 ± 0.04
Th	1	0.08 ± 0.03	0.12 ± 0.06	0.09 ± 0.02	0.06 ± 0.05	0.02 ± 0.10
K	6	5.10 ± 0.09	5.12 ± 0.13	5.12 ± 0.13	5.08 ± 0.07	5.03 ± 0.09
Fe	15	7.51 ± 0.08	7.67 ± 0.03	7.50 ± 0.05	7.45 ± 0.05	7.50 ± 0.04
Os	3	1.15 ± 0.06	1.45 ± 0.10	1.45 ± 0.10	1.45 ± 0.10	1.25 ± 0.07
Z		0.0154	0.0189	0.0171	0.0122	0.0134
Z/X		0.0211	0.0267	0.0234	0.0165	0.0183

AG89 Anders & Grevesse Geochemica et Cosmochimica acta, 1989 Vol. 53 (6th place) GS98: Grevesse et Sauval; Space Science Reviews 85: 161-174, 1998 AGS05: Asplund et al.; ASP Conferences Series, Vol. 336, 2205 AGGS09: Asplund, Grevesse, Sauval, & Scott, 2009, ARAA 47, 481

O-abundance: model atmospheres and spectral synthesis (NLTE) enter on the 0.05...0.1 dex level

Absolute chemical abundances and fundamental atmospheric parameters

- Solar abundances from spectroscopy benchmark demand model atmospheres of highest fidelity
- Differences between Caffau et al. and AGSS09 dominated by systematics in model atmospheres and assumptions in NLTE spectral synthesis
 - same spectra, same atomic parameters used ...
- \checkmark $T_{
 m eff}$ and $\log g$ obviously well constrained in the case of the Sun
- Constraining physics of atmosphere models (late-type stars) using chemistry in other stars needs
 - $T_{\rm eff}$ to better than 1%
 - $\log g$ to better than 0.1 dex
- Would make model systematics apparent like in the solar case
 - Ieft out fine print on abundance cross-talk, extinction, rotation, micro-turbulence

High precision atmospheric parameters?

- Gaia's photometry perhaps up to the task for G < 15 and zero extinction? (Bailer-Jones, 2010, MNRAS 403, 96)
- Combine with ground-based measurements
- Effective temperatures from (in order of decreasing model dependence)
 - spectroscopy: (excitation equilibrium), Balmer line profiles
 - photometry: infra-red flux method
 - angular diameters: $T_{\rm eff} \propto \theta_{\rm LD}^{-\frac{1}{2}} f_{\rm bol}^{\frac{1}{4}}$ (weak model dependence) rather few measurements, none for very metal-poor stars
- Surface gravities from

$$\log \frac{g}{g_{\odot}} = \log \frac{M(\boldsymbol{L}, T_{\text{eff}})}{M_{\odot}} + 4\log \frac{T_{\text{eff}}}{T_{\text{eff}\odot}} + 0.4\left(\boldsymbol{M}_{\text{bol}} - \boldsymbol{M}_{\text{bol}\odot}\right)$$

Gaia provides accurate distances and and estimates of the extinction

Fuhrmann 2004: mid-F to K stars within 25 pc

- \blacksquare $T_{\rm eff}$ from Balmer lines, $\log g$ from HIPPARCOS distances
- **9** Uncertainty in $T_{\rm eff}$ 1.3%, $\log g$ 0.1 dex
- Error budget on gravity dominated by distance error

Metal-poor stars: lack of fundamental $T_{\rm eff}$

(González Hernández et al. 2010)

 \checkmark Colour-magnitude diagram globular cluster NGC6397, $[{
m M/H}]pprox-2$

80 MS + 80 SG stars with FLAMES/GIRAFFE

Metal-poor stars: lack of fundamental $T_{\rm eff}$

 \checkmark $T_{
m eff}$ from Balmer lines in 3D, $\log g$ from colours and cluster isochrone

- $\Delta A(Li)/\Delta T_{eff} = 0.07 \, dex/100 \, K$, apparent trends real?
- Fuhrmann-like precision for metal-poor population for model calibration?

Instead of one take two – detached eclipsing binaries

(Popper 1998)

- Photometric and spectroscopic analysis of eclipsing system provides radii
- Shown distances and extinction provide luminosities $\rightarrow T_{eff}$
- Popper 1998: 14 analysed systems with HIPPARCOS distances to better than 10 %

Instead of one take two – detached eclipsing binaries

- Gaia expected to discover eclipsing binaries
 - photometry $0.5 \dots 7 \times 10^6$ (Laurent Eyer),
 - RVS 25000 SB2s (David Katz)
 - good chances for metal-poor systems
 - substantial ground-based follow-up work necessary
- Certainly also helpful for the less well-charted regions of the HRD
 - temperature scale of very late M-type and substellar objects uncertain
 - atmospheric and atomic physics complicated due to molecular and dust formation

Clean populations – example from HIPPARCOS & Hyades

(from Madsen, Lindegren, & Dravins 2000)

- Inclusion of proper motion information improved parallaxes $1.5 \max (top panels) to 0.3...0.5 \max (bottom panels)$
- Cleaned for binaries (right panels) with available kinematics and distances
- Reveals fine features in the cluster main-sequence interpretation?

Hyades: chemical homogeneity versus model problems

(from Schuler et al. 2006), dwarfs dots, giants stars

- Oxygen from forbidden 6300 Å line (no NLTE effects!) in Hyades
- Chemical inhomogeneous or modelling deficit? Chemical tagging?

Astrometric versus spectroscopic radial velocities

(from Dravins 2003 base on HIPPARCOS data)

Testing dynamics predicted by 3D model atmospheres

CIFIST 3D grid plus ASSET spectral synthesis (Koesterke, Allende Prieto, Ludwig)

RANGER 65 000 core machine at Texas Advances Computing Center (USA)

Testing dynamics predicted by 3D model atmospheres

- Micro-turbulent velocities from Fuhrmann (2004)
 - micro-turbulence and line shifts both of convective origin