

A New Mechanism for Galactic Disk Mixing: Implications to the Milky Way

Ivan Minchev Strasbourg Observatory

Observatoire astronomique de Strasbourg

Radial mixing of galactic discs Current mechanisms

- The metallicities of stars in the solar neighborhood lack the expected correlation with age (Edvardsson et al. 1993; Haywood 2008).
- Explained by stellar radial migration in the disc:
 - Transient Spirals (Sellwood & Binney 2002)
 - Small satellites can mix the outer disc (Quillen, Minchev, Bland-Hawthorn & Haywood 2009)

Are galactic Bars important for Radial Migration?

Resonances in galactic disks

Corotation $\Omega_s = \Omega_0$

Radial migration due to a single perturber

No variation with time

Stars mix only near the corotation resonance of the Bar or Spirals (dotted lines).

• Not nearly enough to explain observations.

*

Radial migration from Transient Spirals

Sellwood & Binney (2002)

Radial migration from Transient Spirals

Requires ~9 Gyr for sufficient mixing

Hamiltonian including two perturbations

Third-order, post-epicyclic approximation

 $H_0(I_1, \theta_1; I_2, \theta_2) = aI_1^2 + 2bI_1I_2 + cI_2^2 + \kappa I_1 + \Omega I_2 + \dots$ Contopoulos (1975, 1988)

$$H(I_1, \theta_1; I_2, \theta_2) \approx H_0 +$$

$$\epsilon_b I_1^{1/2} \cos[\theta_1 + 2(\theta_2 - \Omega_b t)] +$$
Perturbation from Bar
$$\epsilon_s I_1^{1/2} \cos[\theta_1 - m(\theta_2 - \Omega_s t) - \gamma]$$
Perturbation from Spiral

After a canonical transformation with a resonant angle $\phi = \theta_1 \pm m(\theta_2 - \Omega_p t)$ $H(J_1, \phi) \approx a J_1^2 + \delta J_1 + \beta J_1^{1/2} \cos(\phi) + \epsilon J_1^{1/2} \cos(\phi + \nu t - \gamma)$

This is time independent and J_2 is conserved

First order Lindblad Resonances with the Bar

Hamiltonian description

Closed orbits correspond to fixed points

Hamiltonian including two perturbations: Analogy to the forced pendulum

Strength of first perturbation

Strength of second perturbation

 $H(J_1,\phi) \approx aJ_1^2 + \delta J_1 + \beta J_1^{1/2} \cos(\phi) + \epsilon J_1^{1/2} \cos(\phi + \nu t - \gamma)$

Controls center of first resonance and depends on radius

Controls spacing between resonances and also depends on radius

Spiral structure at the Bar's Outer Lindblad Resonance

Oscillating primarily with spiral structure
Perpendicular to Spiral Structure
Oscillating primarily with the Bar
Perpendicular to the bar

Area-filling orbits

Quasi-periodic orbits

Poincare maps used to look at stability. Plot every $\Delta t = \frac{2\pi}{N}$

Orbits are either oscillating with both perturbations or are **Chaotic**: Induces **Heating** and **Migration** (Quillen 2003)

Radial migration at Corotation with Spiral

m=4 at OLR

m=2 at Corotation

Two perturbers create stochastic regions Multiple Spirals

Mixing throughout the entire disk

• Distribution of home radii at $t \sim 2$ Gyr of particles starting in the range indicated by the green lines (200 pc width).

• Mixing by Resonance Overlap can be an order of magnitude more efficient than mixing by Transient Spirals.

Migration from Resonance Overlap of Multiple Patterns Confirmed in 3 independent simulation set-ups

Minchev, Famaey, Combes, Di Matteo & Wozniak (2010), arXiv:1006.0484

Particle-Mesh, Geneva Group code, Wozniak & Michel-Dansac (2009)

Direct N-body, phiGRAPE (Harfst, S. et al., 2006), Alice Quillen on GPU

The importance of a gaseous component

GalMer giant Sa model, Vc~280 km/s

GalMer giant Sa model, Vc~280 km/s

How do we expect to identify this mechanism in the Milky Way?

- History of Milky Way bar and spiral structure currently unknown.
- Are we currently in an episode of strong mixing?
- Chemical tagging, as suggested by Ken and Joss. Up to 35 elements, 7 to 9 dimensional space. A dissolved star cluster will be a point in chemical space (HERMES, GYES).
- Look for different signatures in the density and metallicity distribution at different locations in the Galaxy (RAVE, GAIA, APOGEE).
- Extended Milky Way disk? Extensions to HERMES and GYES.
- A chemo-dynamical disk model including the effect of the Galactic bar is currently being developed (D. Pfenniger's group in Geneva).