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Why care about stellar halos!?

Most metal-poor and ancient stars in the MW

* window into the early Universe

Orbiting outskirts of galaxies: good mass probes

Can form from the superposition
of disrupted satellites

estars retain memory of their origin
-> merger history
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Helmi, Cooper et al. (2010)




Outer Stellar halo

- Substructure common in the halo (SDSS, 2MASS...)
-> mergers

-> Broad, diffuse streams (large progenitors? ...but beware of biases)

overdensities -> nature not always clear
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Some questions

* What are the properties of stellar halos and satellites in ACDM?
How do they compare to the Milky Way or M3 1?

* What are models predictions for future surveys!?

* What do we learn about the history of a galaxy from its stellar halo?




Stellar halo and Substructure in ACDM

Aquarius project: very high-resolution simulations of formation of 6 different dark
matter halos ressembling the Milky Way (by mass)

Cooper et al. (2009)
combined with
phenomenological galaxy
formation model

-> predict properties of Aqu 2
(accreted) stellar halos + *
in CDM

o

See also Bullock & Johnston 2005; De Lucia & Helmi 2008 Springel et al. 2008




Aquarius stellar halos
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Follow the history, their present-day location and dynamics




Stellar halo formation in

the Aquarius simulations

Cooper et al. 2010 Helmi, Cooper et al. 2010




Aquarius “accreted” stellar halos

Large variation from halo to
halo -> reflects different
histories

Large amount of substructure
-> history may be
recovered




Helmi, ﬂoovm_, etal.2010
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Substructure apparent at d > 10 kpc and dominant at d > 30-50 kpc

Anisotropically distributed (coherent in dist)

Inner halo (d < 10 kpc)
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Broad/diffuse features

t

dominan

Narrow streams also

present

Sgr and O-stream visible in

the Ag-A sky!

Helmi, Cooper et al. 2010
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The Aquarius “field of streams”
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Streams from different
progenitors may follow
similar paths on sky
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24 different objects contribute to this field

M.~ 103 M_, (orange) upto 9 x 107 M_,_ (purple)

sun




Stellar halo

Distribution on the sky: anisotropic at large radii

New surveys likely to find (most) substructures in same regions as SDSS

Reflects infall pattern of material; relation to large scale environment around galaxy

Inner stellar halos are older: by age and dynamically

— contain unique clues about early galactic history




Inner Galaxy

= More interesting:

" |ocation of large majority of stars

" Mixing timescales are short
" Debris no longer spatially coherent

= Memory is retained in kinematics

Velocity space Velocity s

very early on
in our own
backyard

Helmi et al. 1999
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Inner/nearby stellar halo

Few objects contribute here: 75% of stars near Sun from 3-5 parents

Memory in kinematics -> many streams crossing Solar neighbourhood
Should be visible with Gaia!

Holo C
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“Conserved” quantities/integrals

(Kinetic) Energy [(km/s)?
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= Better spaces to look for L2 [kpe km/s]
clustering -> conserved

quantities: “E” vs Lz 200107
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Despite “chaotic build-up” : _

Conser’vation Of Phase_space —-3000 —2000 -1000 O 1000 2000 3000 —-3000 —2000 —-1000 O 1000 2000 3000
Lz [kpc km/s] Lz [kpc km/s]

density ensures presence of Holo €

many ever-colder streams for

each accreted galaxy
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Frequency space
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e Stars in a portion of a stream have very similar orbital frequencies (periods)

* As streams cross in space, they may still be recognized by their velocities or their
frequencies




Frequency space: time since accretion
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- Characteristic separation depends on time since accretion:

N, = [AO(t)/ 2n] = [AQ t /2] and 8Q = A Q/N_,

- Timescale easily estimated with Fourier analysis techniques

- works well (within |5 — 25%) even in time-dependent, or live potentials



Frequency space: time since accretion
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Gomez & AH 2010
- Streams sharply defined on a regular grid omez

- Characteristic separation depends on time since accretion:
N, = [AO(t)/ 2rt] = [AL2 t /2:t] and 02 = A Q/N_,,

- Timescale easily estimated with Fourier analysis techniques

- works well (within |5 — 25%) even in time-dependent, or live potentials



Gaia’s

Semi-cosmological
simulation of stellar
halo (time-dependent
analytic potential)

Streams in SN clearly
visible, particularly for
large period orbits

When errors are taken
into account, streams
are less “sharp”
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errors and limitations

Gomez et al.2010
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Without errors: time
of accretion is easily
measurable

With errors, streams
are diffuse

With error cut:

< 6 km/s or o/ ~ 0.02

streams become sharp
(though less populated)

Time of accretion
retrieved

— |f 100 stars from
accreted satellite have
very good velocities
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Gomez et al.2010

Gaia’s errors and limitations
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Summary

* Accretion likely important in build-up of stellar halo
— Objects!?

* how many? properties? masses, star formation and chemical histories!?

* Cosmological models of formation

— predict substructure at all radii
* kinematic at r < 10-20 kpc; hundreds of streams near the Sun

 Spatially coherent at large distances and anisotropic on sky ->infall pattern

— Qualitatively in agreement w/observations

* Present and Future: many ongoing surveys and Gaia
— Substructure from ancient events expected
— More difficult to detect (oM, frequencies)... but early epochs!

— Gaia capable of unraveling accretion history of the Galaxy




