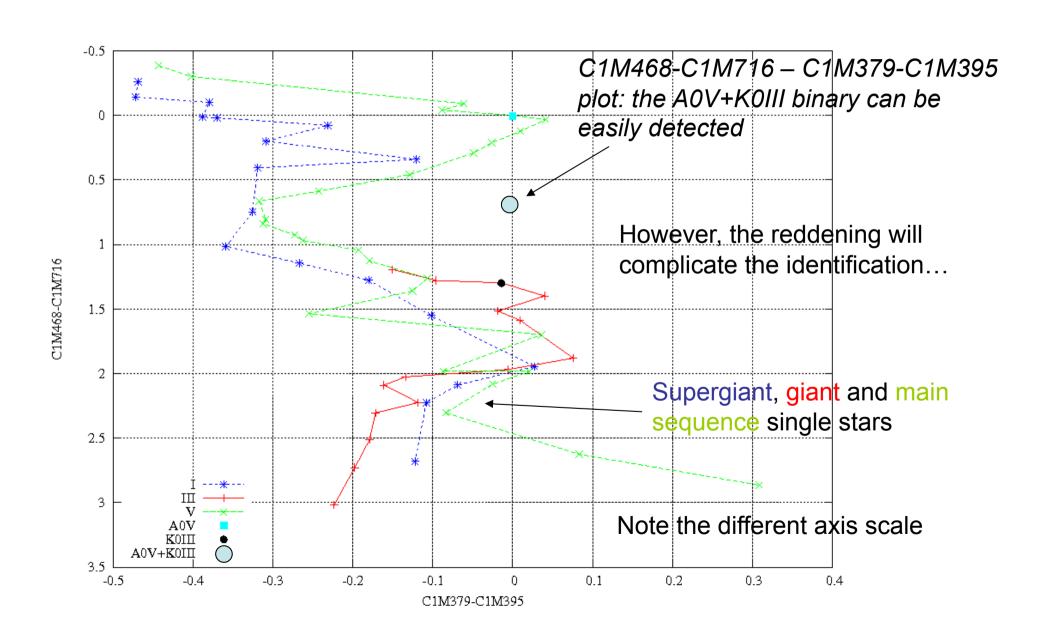
## Recognition of unresolved binaries on Gaia color index diagrams

Malkov O., Mironov A., Sichevskij S.

Institute of Astronomy, Russian Academy of Sciences and

Sternberg Astronomical Institute, Moscow State University


malkov@inasan.ru

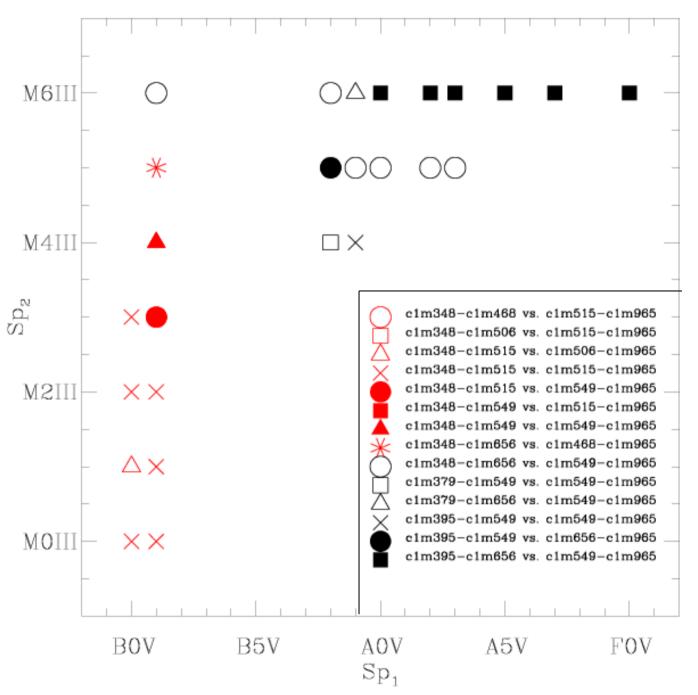
ELSA conference, France, 7-11 June 2010

#### The task

- Some photometrically unresolved binaries exhibit colors different enough from ones of single stars.
- Such binaries can be separated from single stars in some color index diagrams.
- The goal of the current presentation is to specify those binaries and those Gaia color index diagrams.
- To simulate binaries, Pickles (1998) spectral library, Gaia response curves and Fluks et al. (1994) interstellar extinction law A<sub>λ</sub>/ E<sub>B-V</sub> are used

### An example: Gaia colors for A0V+K0III



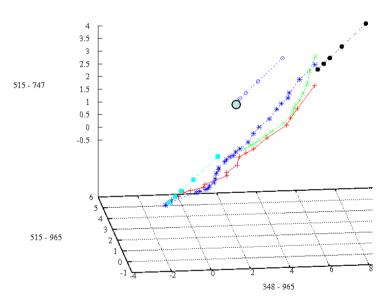

### The following pairs can be unfiled:

- Evolutionary meaningless pairs.
- Pairs with components of very different luminosity (Wm>3<sup>m</sup>).
- Pairs with components of similar temperature
  (☒Sp<½ spectral type, this approximately gives
  ☒ logT<sub>eff</sub> < 0.1 for hot stars, and < 0.02 for cool stars). However, such pairs are recognizable on color-magnitude plots, as they have an increased luminosity for a given color.</li>

For remaining ~420 types of pairs, "best" Gaia color index diagrams are found

# For every possible couple of spectra a two-color Gaia diagram can be found, where a separation of such a binary from the nearest single star is a maximum:

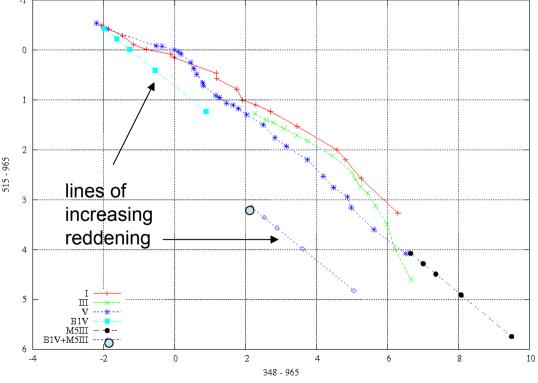
| Binary star  | Best two-color diagram for separation | Separation from the nearest single star, mag |
|--------------|---------------------------------------|----------------------------------------------|
| 1. B0V+F5I   | c1m348-c1m515 - c1m861-c1m965         | 0.1                                          |
| 2. B8V+M3III | c1m395-c1m549 - c1m549-c1m965         | 0.9                                          |
| 3. A0V+M6III | c1m395-c1m656 - c1m549-c1m965         | 1.4                                          |
|              |                                       |                                              |
| 419. K3V+M1V | c1m410-c1m549 c1m716-c1m747           | 0.1                                          |




Primary vs.
secondary
spectrum plot
(fragment):
best two-color
diagram for
every binary is
indicated

Only pairs are indicated, where separation from single stars > 1<sup>m</sup> can be reached

Note the importance of extreme (m348 and m985) bands!


### Another example: B1V+M5III, Gaia photometry



Note: this pair was/is not a detached binary, as the more evolved component is the less massive one: mass(B1V)=15m<sub>o</sub>, mass(M5III)=1m<sub>o</sub>



Here interstellar extinction does not prevent to discover the pair



### Summary

- A tool for simulation of color index diagrams is constructed.
- Gaia color indices, suitable for singlebinary star separation, are found.
- Gaia photometry can be used for [even reddened] single-binary star separation and for parameterization of stars.

### Acknowledgements

- Dimitri Pourbaix and Frederic Arenou for collaboration and valuable comments
- Russian Foundation for Fundamental Researches for financial support (09-02-00520, 10-02-00426)
- ELSA conference organizers