Pyxis V2

OBD-CoCo-08

V0.3

F. Arenou, C. Babusiaux, F. Chéreau, S. Mignot Observatoire de Paris

March 1, 2004

Abstract

Pyxis¹ is the software package developed for the data processing on-board Gaia. The Pyxis package encompasses the detection (GD), selection (sel1), and cross-matching (xcorr) algorithms as well as the test environment used in the Astro and Spectro instruments. Its dual use is the evaluation of the resources needed for the Payload Data Handling Electronics contract (PDHE) and the simulation of the scientific output for the Gaia GIBIS simulator.

1 Introduction

The scientific algorithms to be used on-board Gaia cover a large range, from the detection, confirmation, selection and object tracking, the sky background estimation, the classification of the detected objects, to the NEO/KBO detection by cross-matching. The Gaia Payload Data Handling Electronics (PDHE) contract, started at the beginning of 2003, aims at designing the implementation architecture for the Payload Data Handling System, and to develop a representative breadboard [Armbruster, 2001]. The estimation of the resources needed on-board depend crucially on the availability of the algorithms, and a very significant effort has thus been devoted to tailoring and providing technically realistic software

The scientific requirements are to detect and download all objects down to about 20 mag, with few false detections [Babusiaux & Arenou, 2001]. This is also required for moving, saturated, double or extended objects, with a robustness with respect to crowded fields, high and varying background, and cosmic rays. The first step of the on-board data handling consists thus in detecting all these objects. In the beginning of 2003, the detection algorithm (GD) which had been developed [Chéreau, 2002] was representative of a part of the scientific needs of Gaia.

¹Pyxis is a constellation of the Southern hemisphere also known as the "Compass", i.e. the instrument which shows the way, one of the functions of the on-board software through the scan rate determination. The new Latin word *Pyxis* comes from the Greek *Puxis* (box), and is a reference to the pixel boxes transmitted by the on-board software.

Originally a part of the former *Argo Navi* constellation, the Pyxis constellation, at the edge of the Milky Way, was named in 1752 by the Paris Observatory astronomer Nicolas-Louis de La Caille (1713-1762). During his stay at the Cape of Good Hope, he measured the positions of about 10000 stars during 110 10-hours observation sessions and named 14 constellations, among which Pyxis, to organise the measured stars.

Pyxis stands for PYXel Instrument Software, where the "Y" instead of "I" should be the only software bug...

Initially based on the APM algorithm, the GD algorithm implemented sky background estimation, object detection (stellar or extended), object centroiding, flux and shape measurements, and primitive object discrimination (star, saturated star, extended object) [Mignot, 2003a]. Although it relied on a Gaia-specific line-spread function for along-scan centroiding and buffered data to account for the Time Delayed Integration (TDI) motion, many adaptations to the Gaia case had not yet been done.

During 2003 the detection algorithm underwent profound modifications in two respects. In a first step, the algorithm capabilities were increased with the improvement of double star detection (which should be detected to as close separations as possible because the cut-off of their flux renders the astrometric reduction difficult), and the rejection of false detections on stellar spikes. With the first industrial analysis received in April [Schaefer, 2003a] and discussions on alternative algorithms [Arenou et al., 2003] it became clear that it would be difficult to implement the algorithms as they stood within the framework of the foreseen on-board data handling resources – namely to be able to handle the maximum object density in continuous mode. Beside achieving much improved stability and efficiency, most of the development has thus been focused on easing migration towards a mixed hardware/software implementation. In-depth analysis of the algorithms has led to a thorough rewrite adapted to the target architecture: the hardware part would deal with pixel-based operations, while the object-based operations would be done in software. Demonstrating the feasibility of the pixel-based operations has led to designing original methods devoted to the connected-component search [Mignot, 2003b] or to the deblending scheme for overlapping components [Mignot, 2003c]. A fast estimation of sky background has also been devised [Arenou et al., 2003]. Finally, the software has been extensively reviewed in order to provide a realistic approximation of on-board operation: data types have been tightly adjusted to suit the underlying scientific requirements, simple logic and low-level implementation have been introduced wherever a hardware implementation might be used, as have threads to fully specify the degree of interdependence of sub-tasks and emulate hardware-based processing. Iterations between the industrial implementation analysis [Schaefer, 2003b, Schaefer, 2003a] and their evaluation [Mignot & Arenou, 2003] for other possible trade-offs are still on-going. All these efforts aim at altogether limiting the complexity on the pixel side, ensuring that the data flows on the object side are reduced and providing a realistic framework for both estimating needed on-boar resources and expressing scientific requirement. In this respect, the selection algorithm also plays a significant role.

In effect, after detection, the objects must be either rejected or selected and then followed in the focal plane with an adapted windowing. Allocating windows for the detected stars does not seem to be, at first sight, a difficult problem. Several issues conspire, however, to make this selection task more complicated than simply assigning boxes of various sizes at given positions. For thermal stability reasons, the number of CCD read samples has to be kept constant to a value defined either by an assumed maximum density, or by the dimension of the CCDs. In practice, there will be cases (in particular in the spectro instrument, due to the low angular resolution) where the number of detected objects largely exceeds the available number of samples. This implies associating scientific priorities to the different objects. Because the samples cannot overlap (being electronically binned), a large fraction of the objects might not be selected in either dense fields, or simply, in double or multiple systems. Moreover, the processing being performed under stringent real-time constraints, the choice of the windows must be done on a local scale, with no possibility of changing the previous window assignments – this would back-propagate the window area conflicts. Additionally, the processing cannot make use of an image in memory of the pixels rows in order to simulate the areas covered by windows (as was done in the first version of the selection algorithm [Cira & Arenou, 2002]), as the TDI motion would require a real-time management much too demanding. Maximising the number of observations in crowded fields or for multiple systems, i.e. the scientific return, while respecting

these technical constraints has been done using several ideas: favouring overlapping of windows (without overlapping of samples, as can be done in AF1), allowing a slight displacement of the windows, reducing the size of the windows when possible (AF11, BBP), or tiling several short windows to cover multiple systems. A new selection algorithm has been written this year [Chaussard, 2003], allowing a possible multi-threaded approach, and implementing all the complexity outlined above.

The complex sampling, windowing and, more generally, the scientific requirements for the onboard strategy on which the selection algorithm is based have been described in [Høg et al., 2003] and the windowing has further been refined [De Bruijne, 2003b] based on studies relative to the properties of the sky [De Bruijne, 2003a], in the average or worst-case (the Baade window) stellar densities in Astro. Together with [Chassat, 2003], these clarifications have allowed to decrease the foreseen budget of the on-board processing load.

While, in a first step, the analysis and developments concerned mostly the Astro instrument, a growing involvement now occurs for the sky mappers of the Spectro instrument. Whereas the detection and selection algorithms are developed with the goal to implement them also for the Spectro Sky Mappers (SSM) processing, the role of the SSM themselves had to be refined. Initially proposed in [Pouny, 2003], the dual role of star detection for further selection of spectra [Chéreau, 2003] and moving objects (NEO/KBO) detection has led to the development of a dedicated cross-matching algorithm [Chéreau, 2004].

Beside the evaluation of the processing load on-board, the developed algorithms are directly implemented in the Gibis pixel simulator [Babusiaux, 2002] and used for the assessment of the scientific performances. [Arenou et al., 2003a, Arenou & Lim, 2003], for instance, compare GD to various other algorithms. As these performances have to be used for further evaluations of telemetry flow and database content, a simplified model and the associated code have been developed, mostly for use within the GASS Gaia simulator [Arenou & Lim, 2003].

The various algorithms are being developed at the Observatoire de Paris, with the support of CNES funding. The involvement now represents approximately 2.5 full-time equivalents. The resulting amount of software development in the last 18 months exceeded 20 thousand lines of source code, although the current rewriting of the software towards a hardware way of thinking probably render this last estimate hardly representative of the actual involvement. Four researchers/engineers and five students have contributed to the past and current deliveries, for a total estimated to about 6 (wo)man-year.

Several successive software versions have been delivered in 2003 and before (see Appendix for the history of changes) with a major release (1.5) in March [Arenou et al., 2003b] and an upgrade (RC2) in October. This document (updating [Arenou et al., 2003b]) stands as an announcement for the new stable 2.0 release. Except when indicated, the package meets the scientific requirements as formulated in [Høg et al., 2003]. It contains several modules. The first, and most mature one, GD, implements object detection and a set of measurements, the second, sel1, implements object selection and window assignment, finally xcorr performs cross-matching for NEO detection in spectro. The SWA detection algorithm [Babusiaux, 1999] is still provided, mainly for reference and comparison purposes. All are described in this document and more thoroughly in all the referenced documents. They are written in the C language to comply to the PDHE needs and have been ported across a number of different architectures.

On-going studies and development are related to refining the set of measurements and associated methods in order to finely adjust the software part, perform classification, and implement star / cosmic ray discrimination capabilities as well as confirmation. Apart from further adapting the software to the various technical and processing constraints, while maintaining or increasing the scientific return, the general aim is to provide a complete, robust and accurate model of object management in the Astro and Spectro focal planes.

2 Assumptions

In the following we use the Astrium design and the corresponding CCD nomenclature, as described in [Bastian, 2003]. In summary, for what concerns the Astro instrument, the detections are thus done in the ASM1 CCD, corresponding to the Astro-1 Field of View (FOV) and in ASM2, corresponding to the Astro-2 FOV. Both detections allow for selecting the windows to be observed in AF1 (first selection). Confirmation then occurs and runs the detection again on the windows observed in AF1. Then, the objects, if confirmed, undergo a second selection for the AF2-10 observations. These objects only can be observed in AF11 and BBP1-5 later on. However, only a part of them will be observed in these instruments in cases of high stellar density, as windows are larger and additional conflicts will occur (samples must not overlap).

In the spectro instrument, the objects are detected in SSM1 and detected in SSM2, then cross-matching is performed between these two detection lists. Finally the selection procedure is applied providing the addresses of the windows to be observed in the following Spectro CCDs. Beside photometry, one of the CCDs has a special role, which is the prediction of the spectra to observe in the RVS field.

The purpose of confirmation (Astro) or cross-matching (Spectro) is primarily to remove the detections due to cosmic-rays. A cross-matching is used in Spectro as the use of windows would otherwise discard too many detections, due to crowding. Besides, the cross-matching also tries to detect NEOS, i.e. objects whose motion is significant.

The sizes of samples and windows and the processing in the various CCDs follow the requirements in GAIA-CUO-117 ([Høg et al., 2003]) and updated in [De Bruijne, 2003b], and the current assumed values can be found in the Appendix. From now on, the Gaia Parameter Database [De Bruijne et al., 2003] will supersede these values.

For the moment, we rely on FITS images to simulate the observed data. The Input/Output data exchange in the following algorithms is thus emulated the following way:

- the input to the detection algorithm is provided using a FITS image (extension *.fits).
- the communication between the detection algorithm (output) and the selection algorithm (input) is done with a standard unix file (*.detect), where each ASCII line represents a detection and contains the needed information per object;
- the communication between the first selection algorithm (output) and the confirmation algorithm (input) is done with a file (*.AF1select)
- the (new) confirmation algorithm is not available yet. However most of the operations can be found in the detection software, although the whole detection features are however not used: no need to compute the sky background (propagated from the ASM), or to filter the data.
- the output of the first on-board selection is a file containing the samples read for the confirmation (output, *.samp) and a file containing the objects confirmed and selected to follow (output, *.select).
- The remaining selections and tracking in the following CCDs are done as for the first selection process.

It should be mentioned:

• that the FITS reading/writing modules should not be accounted for in the evaluation of the on-board resources; that it should be replaced by a simulation of the actual CCD accesses;

- that nothing in the software is related to what is actually pre-processed (possible calibration prior to the detection), downloaded, nor post-processed (numerical binning, compression, RVS reduction of data volume, telemetry formatting, etc).
- that the dating of events (TDI) is replaced internally by a pixel number along-scan.

3 The GD detection algorithm

The high-level description of the GD algorithm is given in the OBD-SM-02[Mignot, 2003a] document. The algorithm performs the following functional requirements described in section 7.A.2 of [Armbruster, 2001]:

- sky background estimation
- object detection
- star/bright star/galaxy/other object discrimination
- object centroiding, flux and shape parameters

The current status is summarised in Table 1. Both the man page and OBD-SM-004 documents are forthcoming. Significant updates have been made to [Mignot, 2003a] and [Mignot, 2003b] in the preparation of the 2.0 release.

Table 1: GD capabilities. Future developments are those which have been partly implemented or prototyped only.

Function	Status	Reference
Streamline (follows TDI lines)	Yes	[Mignot, 2003a, OBD-SM-002]
Threads (background $+$ per object)	Yes	[Mignot, 2003a, OBD-SM-002]
Server mode	Yes	man page
ADU handling	Yes	-
Pixel floating point operations removal	Partly	[Mignot, 2003d, OBD-SM-007]
Connected components for hardware	Yes	[Mignot, 2003b, OBD-SM-006]
One-pass deblending for hardware	Yes	[Mignot, 2003d, OBD-SM-007]
Deblending optimisation for DMS	Yes	[Mignot, 2003c, OBD-SM-003]
Fast sky background estimation	Yes	[Arenou et al., 2003a, OBD-CoCo-005]
Bright star numerical/CCD gating	Yes	man page
Saturation of bright stars (flux/centroid)	Partly	[Chéreau, 2002, OBD-FC-001]
LSF fitting (flux/centroid)	Partly	[Chéreau, 2002, OBD-FC-001]
Remove false detections on spikes $(G > 7)$	Yes	OBD-SM-004
Object classification	Proto	[Chéreau, 2002, OBD-FC-001]
Confirmation (except detection step)	Proto	[Cira & Arenou, 2002, OBD-HC-001]
Optimisation of code	Yes	[Mignot, 2003d, OBD-SM-007]

For what concerns the on-board processing requirements, some default parameters (e.g. detection thresholds) have been chosen, but are not fixed, because a compromise between scientific return, speed, and telemetry budget should be found. For example, the detection threshold have been defined such as to ensure less than one false detection per million samples in a field of average stellar density. They could be chosen smaller as the confirmation step also allows for discriminating wrong detections due to noise. One reason which prevents the thresholds to be fixed now is the uncertainty on the actual cosmic rays rate. The current adopted thresholds are given in the first lines of the GaiaDetect.pl script and in the .ds9.ans configuration file.

4 The selection algorithm

For this algorithm, the following functional requirements were planned in sections 7.A.2 and 7.A.3 of [Armbruster, 2001]:

- cosmic rate discrimination: no special implementation is done, it is intended to discard the objects not confirmed;
- scan rate determination: computing the time difference between ASM and AF for wellbehaved stars is not yet implemented.
- acquisition of star data stream in the astro instrument: done for spectro also, and a lot of requirements [Høg et al., 2003] have been added and implemented since [Armbruster, 2001].

The sel1 program is used for the first and subsequent selections. It uses the SelectConfig.txt configuration file (see below). The algorithm is described in [Chaussard, 2003] and [Arenou & Lim, 2003] and its capabilities are summarised in Table 2.

Function	Status
Limited magnitude for selection	Yes
Maximum number of samples per row	Yes
Window overlapping (without sample overlap)	Yes
Sample and window sizes in all CCDs, all mag	Yes
Standard/Short window sizes on the fly	Yes
Move by a few pixels of windows	Yes
Tiling of the windows	Astro only
Confirmation (except detection step)	No
Transverse motion	No
Threads	Partly
Optimisation of code	No

Table 2: Selection capabilities (see [Chaussard, 2003, OBD-JC-001]).

5 The cross-matching algorithm and other SSM processing

This algorithm, xcorr, used in the spectro instrument only, was not planned in [Armbruster, 2001]. It uses the SelectConfig.txt configuration file (see below). The algorithm is described in [Chéreau, 2004] and its capabilities are summarised in Table 3.

To this algorithm should be added the processing to be done in the CCD with the 861 filter (same s RVS) for the spectra prediction. It is still in definition phase (see [Chéreau, 2003, OBD-FC-002]).

6 Package description

Together with this document, the following data are given:

Function	Status
Cross-matching	Yes
NEO detection	Yes
False NEO detections removal	Partly
Transverse motion	Yes
Threads	No

Table 3: Cross-matching capabilities (see [Chéreau, 2004, OBD-FC-003]).

- GD detection software: source files, header files, configuration files (line-spread function, and magnitude correction for saturated stars, ***.spl**), Makefile, documentation.
- SWA detection software: source files, header files, configuration file (point-spread function, psf_+1.0_13.fits corresponding to point 13 of the astro field), Makefile, documentation.
- sel1 selection software: source files, header files, configuration file (SelectConfig.txt), Makefile, documentation.
- xcorr cross-matching software: source files, header files, configuration file (SelectConfig.txt), Makefile, documentation.
- FITS images (*.fits) produced by the GIBIS simulator from a list of input sources (*.cat) containing x,y (pixel) and G magnitude. Simulation information in the *.README.
- a makefile to construct all this and perform tests using the ds9/xpa software (when available locally).

The calling procedure for these algorithms is not described here: for simplification purposes, perl scripts are also given and described below.

The configuration file (SelectConfig.txt, in the tests directory) is described in the appendix. It contains all the instrument parameter used by the selection process. It will be replaced by an output of the Gaia Parameter Database, and currently contains both the Gaia Parameter Database parameter names and those used internally, for compatibility purposes.

The given images are the following, and their filenames indicate in which sky mapper they have been simulated, together with the sample binning:

- BaadeDupli_ASM1_2x2.fits, represent the Baade window (HST data duplicated AC to cover a CCD), corresponding to a density of about 4 million stars per square deg. up to magnitude 20, in ASM1. This file represents about 0.5 s scanning time in the Astro field.
- f25k_SSM*_1x1.fits, f50k_SSM*_1x1.fits, f130k_SSM*_1x1.fits, f1M_SSM*_1x1.fits represent respectively 25 000, 50 000, 130 000 and 1 million stars per square degree in the spectro instrument, with a 5.5s exposure time. It should be noted that the Spectro design has just changed, but simulations are not yet implemented, and these images represent simulations of the former design in RVSM. For future compatibility purposes, we have however used the denomination SSM.
- G231b_0,25_ASM1_2x2.fits, G231b_0,25_SSM1_1x1.fits, are simulations at latitude 25°, corresponding to a density of about 25 000 stars per square deg. up to magnitude 20. They represent 1.9 s and 5.5 s scanning duration in Astro and (former) MBP fields respectively.

- 174b0_ASM1_2x2.fits, 174b0_SSM1_1x1.fits, corresponding to a density of about 50 000 stars per square deg. up to magnitude 20. They represent 1.9 s and 5.5 s scanning duration in Astro and (former) MBP fields respectively.
- BaadeDupli_cosmic_mean_ASM1_2x2.fits, same as above, with (unrealistic) simulations of cosmic rays.

Several among these files have a corresponding *_nonoise.fits which is the file without binning and without RON of the observation in the following CCDs (AF1 for ASM, MBP3 for SSM) and are used to generate samples. The files f*_SSM*_1x1.fits are used for testing the cross-matching.

These images represent a small satellite transit duration only (the reason being partly to save disk space), and can be duplicated several times along scan with the given software (option --dimal in GD) to simulate a long transit through the instruments. Note that if duplication of the images is done, it should be done both on the images with and without noise, and the list of input sources *.cat should also be extrapolated with the correct shift of input positions.

7 Porting

Just type make. This does the compilation and runs a test with ds9. All softwares have been tested on:

- Apple Powerbook PowerPC G4 (1.1) + Mac OS X (10.3.2) + gcc version 3.3 20030304 (Apple Computer, Inc. build 1495)
- Compaq XP 1000 Alpha EV6 (64 bits) + Digital UNIX V4.0E + native cc
- Dell PC server PowerEdge 4600 + Linux RedHat 7.3 + gcc version 2.96 20000731
- HP xe 4500 + Linux Mandrake 9.2 + gcc version 3.3.1
- Pentium III 600 MHz + Linux Debian testing/unstable (above version 3.0) + gcc version 3.3.2.

and should thus be ported on other architectures/OS/compilers without too much trouble. It is implicitly assumed that a gcc compiler, a make (preferably gnumake) is available, otherwise the call should be: make CC=mycompiler MAKE=mymake. Editing GD/Makefile is required to compile on Alpha architectures. Support can be provided for Unix (including Linux and Mac OS X) but not for other operating systems.

8 Tests

In order to ease the tests, several test procedures in perl (assuming perl has been installed in /usr/bin) are given in the tests directory, and should be run in this directory only. These procedures are the easiest way to do the analysis with shell commands as they use by default the adopted configuration for detection and selection. They also provide an easy way to know how to call the detection and selection software. The scripts are:

- GaiaDetect.pl: runs the GD detection
- GaiaSwa.pl: detection using SWA
- GaiaXmatch1.pl: runs the cross-matching (SSM only)

- GaiaSel1.pl: runs the first selection
- GaiaSel2.pl: selection and tracking in the following CCDs
- GaiaWin.pl: output the samples of the selected windows
- GaiaSources.pl: shows the input sources in ds9
- GaiaStat.pl: statistics on the detection
- GaiaErrors.pl: indication of false and non-detection

These scripts generally take as first argument the name (with or without .fits extension) of the FITS file. They assume more or less that the FITS filename contains the name of the sky mapper (ASM1, ASM2, SSM1), and the sampling (due to the sampling design in ASM which has varied with time). In general, further arguments on the command line of these scripts are passed to the relevant program (GD, etc.).

In particular, these scripts are used by the ds9 program, and written in its analysis file .ds9.ans. Through its graphical interface, the program ds9 provides the easiest way to do the analysis. Juste type make followed by the FITS filename (without the .fits extension), then will be ds9 is called, and the detection/selection is done. Typing make alone uses BaadeDupli_ASM1_2x2 by default. The result for the Baade window in BBP is shown in Figure 1. Then one may go to the Analysis menu, and several analysis are possible at the end of this menu (note that the sub-menus may be detached from the menus by clicking on the dashed line). For example, cumulative plots of the object magnitudes, or statistics on detection can be accessed this way (this calls respectively the scripts GaiaCumMag.pl and GaiaStat.pl).

Several of the program or scripts build regions which are superimposed on ds9 images. For this purpose, intermediary files are written. Their names are ***.reg** for SWA and **xcorr**, ***.ell** for GD, ***.sel** for the selection, ***.cross** for the position of the input stars.

Sscript support for other detection algorithms (APM and SExtractor) has also been included, but the corresponding programs are not given. Note that these programms my need to be modified in order to support the BITPIX=-16 coding used in the FITS files.

9 Example

A typical run could be to count the number of samples to be read in the "worst" case: the Baade window file.

```
GaiaDetect.pl BaadeDupli_ASM1_2x2
GaiaSel1.pl BaadeDupli_ASM1_2x2
GaiaSel2.pl BaadeDupli_ASM1_2x2 AF2
GaiaSel2.pl BaadeDupli_ASM1_2x2 AF11
GaiaSel2.pl BaadeDupli_ASM1_2x2 BBP1
```

Finally the samples in e.g. AF11 are obtained by:

```
GaiaWin.pl BaadeDupli_ASM1_2x2 AF11
```

10 File formats

• *.fits: FITS is a widely used format in the astronomic field. Its description may be found on the WWW. FITS images contain an ASCII header followed by binary data.

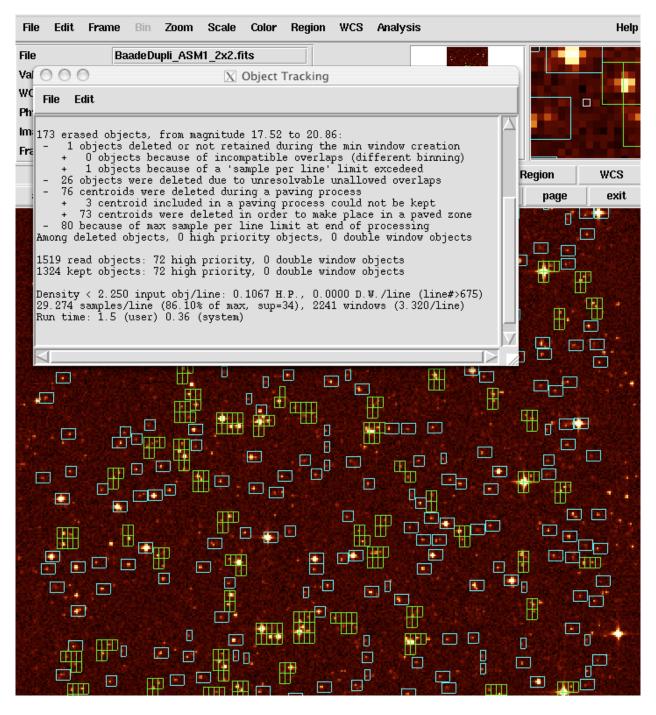


Figure 1: Snapshot of the BBP1 selection of objects in the Baade window, using the ds9 program. Small blue windows are for very faint stars, green windows for tiling of multiple systems, the other windows for normal stars. The foregound text is the summary of the selection analysis.

- *.cat: x, y, G magnitude, with x and y in pixels
- *.detect: a CCD code representing the number of the CCD across-scan and the number of the ASM (11 is used here), number of object, x,y, flux, background, snr, object type, major axis, minor axis, orientation (see Gd documentation), with x, y in sample.
- *.select: CCD code, identification of object (for labelling), x, y etc, as above, this being the result of the selection, with x, y in pixel.

- *.samp: starnum oldflux bgpix numsamplesAL numsamplesAC (sampleALpospix(1,j) sampleACpospix(1,j) (sampleFlux(i,j) i=1,numsamplesAL) j=1,numsamplesAC)
- *.xmatch: x, y, G, x, y, G, x, y, G, x, y, G in the 4 SSM CCDs

The convention for positions is the same as the one adopted for FITS image, that is (1,1) for the center of the first pixel.

11 Bugs and missing features

Care has been taken to develop the detection algorithms with the required level of software quality, although portability problems may nevertheless occur. For example, no memory leaks should remain.

When using the perl scripts mentionned above, the error message "XPA\$ERROR no 'xpaset' access points match template: " may appear, which simply shows that ds9 with the image and the correct title, or the communication with ds9 using xpa, is not running, but this has no impact on the selection/detection process, just on the visualisation of it.

There are also several missing features, which are indicated in the Tables above. All this means that development will continue in these directions.

References

- [Arenou et al., 2003] Arenou F., Babusiaux C., Høg E., Jordi C., Mignot S., 2003, Determination of sky background, Technical Report OBD-CoCo-007, Observatoire de Paris, http://wwwhip.obspm.fr/gaia/obd/OBD-CoCo-07.pdf
- [Arenou et al., 2003] Arenou F., Babusiaux C., Mignot S., 2003, Comments on GP-ASG-RS-0001 implementation analysis, Technical Report OBD-CoCo-006, Observatoire de Paris, http://wwwhip.obspm.fr/gaia/obd/OBD-CoCo-06.pdf
- [Arenou et al., 2003a] Arenou F., Babusiaux C., Mignot S., 2003a, Detection performances in the ASM (I), Technical Report OBD-CoCo-005, Observatoire de Paris, http://wwwhip.obspm.fr/gaia/obd/OBD-CoCo-05.pdf
- [Arenou et al., 2003b] Arenou F., Babusiaux C., Mignot S., 2003b, Input to PDHE contract, Technical Report OBD-CoCo-003, Observatoire de Paris, http://wwwhip.obspm.fr/gaia/obd/OBD-CoCo-03.pdf
- [Arenou & Lim, 2003] Arenou F., Lim J., 2003, Simulation of the on-board detection, Technical Report OBD-FAJCL-001, Observatoire de Paris, http://wwwhip.obspm.fr/gaia/obd/OBD-FAJCL-01.pdf
- [Armbruster, 2001] Armbruster P., 2001, Payload data handling electronics SOW and technical requirements, Technical Report GAIA/TADG21/2001, ESA–ESTEC
- [Babusiaux, 1999] Babusiaux C., 1999, SWA Sliding Window Algorithm V1.0 users guide, Technical report, Observatoire de Paris
- [Babusiaux, 2002] Babusiaux C., 2002, GIBIS, Gaia Instrument and Basic Image Simulator, Technical Report GAIA-CB-01, Observatoire de Paris, Institute of Astronomy, Cambridge, http://wwwhip.obspm.fr:8080/gibis

- [Babusiaux & Arenou, 2001] Babusiaux C., Arenou F., 2001, Work reference document, Technical Report OBD-CoCo-01, Observatoire de Paris, http://wwwhip.obspm.fr/gaia/obd/OBD-CoCo-01.pdf
- [Bastian, 2003] Bastian U., 2003, Reference systems, conventions and notations for Gaia, Technical Report GAIA-ARI-BAS-003, ARI Heidelberg
- [Chassat, 2003] Chassat F., 2003, Note on the Astro VPU processing load, Technical Report -, EADS-Astrium
- [Chaussard, 2003] Chaussard J., 2003, On-board selection algorithm for Gaia, Technical Report OBD-JC-001, Observatoire de Paris
- [Chéreau, 2002] Chéreau F., 2002, Gaia_Detect documentation, Technical Report OBD-FC-01, Observatoire de Paris
- [Chéreau, 2003] Chéreau F., 2003, SSM5-6 red-coated CCDs sampling strategy analysis, Technical Report OBD-FC-002, Observatoire de Paris
- [Chéreau, 2004] Chéreau F., 2004, Cross-matching algorithm description, Technical Report OBD-FC-003, Observatoire de Paris
- [Cira & Arenou, 2002] Cira H., Arenou F., 2002, First implementation of the selection algorithm, Technical Report OBD-HC-001, Observatoire de Paris
- [De Bruijne, 2003a] De Bruijne J., 2003a, PDHE load assumptions properties of the sky, Technical Report GAIA-JdB-009, ESA–ESTEC
- [De Bruijne, 2003b] De Bruijne J., 2003b, Windowing and sampling for faint stars in Astro, Technical Report GAIA-JdB-011, ESA-ESTEC
- [De Bruijne et al., 2003] De Bruijne J., Lammers U., Perryman M. A. C., 2003, A proposal for a Gaia parameter database, Technical Report GAIA-JdB-007, ESA-ESTEC
- [Høg et al., 2003] Høg E., Arenou F., Mignot S., et al., 2003, Scientific requirements for the on-board processing, Technical Report GAIA-CUO-117, -, http://wwwhip.obspm.fr/gaia/obd/CUO-117.pdf
- [Mignot, 2003a] Mignot S., 2003a, Flowcharts of the SWA 2.5 and GD 1.5 detection algorithms, Technical Report OBD-SM-002, Observatoire de Paris
- [Mignot, 2003b] Mignot S., 2003b, A hardware-oriented connected-component labeling algorithm, Technical Report OBD-SM-006, Observatoire de Paris
- [Mignot, 2003c] Mignot S., 2003c, An improved deblending scheme for Gaia's on-board detection, Technical Report OBD-SM-003, Observatoire de Paris
- [Mignot, 2003d] Mignot S., 2003d, On-board detection a representativity and feasibility update, Technical Report OBD-SM-007, Observatoire de Paris
- [Mignot & Arenou, 2003] Mignot S., Arenou F., 2003, Comments on the PDHE data package, Technical Report OBD-SMFA-001, Observatoire de Paris
- [Pouny, 2003] Pouny P., 2003, SSM (RVSM) redundancy scheme, Technical Report GAIASYS.NT.00083.T-ASTR, EADS-Astrium

- [Schaefer, 2003a] Schaefer C. H., 2003a, Analysis of Gaia star detection and selection algorithms from implementation point of view, Technical Report GP-ASG-RS-001, EADS-Astrium GmbH
- [Schaefer, 2003b] Schaefer C. H., 2003b, PDHS requirements, Technical Report GP-ASG-RS-0002, EADS-Astrium GmbH

12 Appendix A: assumed configuration

The adopted configuration is the following, and may be found in the file SelectConfig.txt which is read by the selection algorithm and perl scripts. It contains the cross-reference between the name used in the parameter database, and the names still in use (for the moment) in the Pyxis package.

```
$Id: OBD-CoCo-08.tex,v 1.2 2004/03/01 12:49:56 arenou Exp arenou $
#.ID
#.LANGUAGE
            None
#.AUTHOR
            F.Arenou, J. Chaussard, F. Chereau, H. Cira
#.ENVIRONMENT All
#.KEYWORDS
            Gaia, selection
            These are the constants read by the window selection program
#.PURPOSE
#.VERSION
            1.4 mostly based on CUO-113 and DMS-SS-03 + RVS R=11500+tilt
#.VERSION
            2.0 intermediate version compatible with a text output of the
            parameter database
#.COMMENT
            We now assume that the SSM confirmation is done in \ensuremath{\mathsf{SSM2}}
#.COMMENT
            Revised by ...
# Names follows the Java writing of constants and are generally under the
                                                               #
# form: KIND_WHAT_WHERE_UNITS
                                                               #
   Kind: NB (number of), SIZE, SEP (separation), LIMIT, VEL (speed)
   What: CCD, WINDOW, BINNING, etc
#
   Where: AL (ALong-scan), AC (ACross-scan), CCD, SATUR (saturated zone)
#
   Units: PX (pixel), SAM (sample), SEC (of time)
#
# Names of CCD are 3 or 4 letters, shortcuts being:
         AFX for any of the Astrometric Field CCD between 2 and 10
#
#
        BBPX for BBP 2-5, RVSX for any of RVS CCDs, SSM MBP/RVS sky mapper #
        AXX is any CCD in Astro (ASM+AF), MXX in MBP
#
         BXX for BBP, XXX when not relevant
# Sky mappers are rarely mentionned as the selection process occurs after
                                                               #
         SATELLITE
# Motion along and across-scan (AC periodic change not accounted for here)
                                 Satellite:ScanRate_Nominal
                                                            60
                                                                   VEL_SCANRATE_AL_SPS XXX
Astro:FocalPlane_StarTransitSpeed_AC_MaximumMilliArcsecondPerSecond
                                                        173.84
                                                                   VEL_SCANRATE_AC_MPS XXX
                       Satellite:ScanRate_MeasurementInterval
                                                                   TIME_ADJUST_SCAN_S AF1
                                                             1
CCD GEOMETRY
# Number of CCDs across-scan in the focal plane #
                                 Astro:CCD_Number_AC
                                                      10
                                                                     NB_CCD_AC_ AXX # CCD
                                                      10
                                                                     NB_CCD_AC_ BXX # CCD
                                 Astro:CCD Number AC
                                                                     NB_CCD_AC_ MXX # CCD
                            Spectro:SSM:CCD_Number_AC
                                                       2
# Linear sizes of pixels in micrometer #
                               Astro:CCD_PixelArea_AL
                                                      10
                                                                  SIZE_PX_AL_MU AXX #
                               Astro:CCD_PixelArea_AL
                                                      10
                                                                  SIZE_PX_AL_MU BXX #
                             Spectro:CCD PixelArea AL
                                                                  SIZE_PX_AL_MU MXX #
                                                      10
                               Astro:CCD_PixelArea_AC
                                                      30
                                                                  SIZE_PX_AC_MU AXX #
```

Astro:CCD_PixelArea_AC	30	SIZE_PX_AC_MU BXX #
Spectro:CCD_PixelArea_AC	15	SIZE_PX_AC_MU MXX #
# Angular sizes of pixels #		
Astro:CCD_PixelAngularArea_AL_MilliArcsecond	44.1964	SIZE_PX_AL_MAS AXX #
Astro:CCD_PixelAngularArea_AL_MilliArcsecond	44.1964	SIZE_PX_AL_MAS BXX #
Spectro:CCD_PixelAngularArea_AL_MilliArcsecond	982.2134	SIZE_PX_AL_MAS MXX #
Astro:CCD_PixelAngularArea_AC_MilliArcsecond	132.5893	SIZE_PX_AC_MAS AXX #
Astro:CCD_PixelAngularArea_AC_MilliArcsecond	132.5893	SIZE_PX_AC_MAS BXX #
Spectro:CCD_PixelAngularArea_AC_MilliArcsecond	1473.32	SIZE_PX_AC_MAS MXX
# CCD along-scan dimension #		
Astro:AF:CCD_LightSensitiveArea_AL_Pixel	4500	SIZE_CCD_AL_PX AF1 # px
Astro:AF:CCD_LightSensitiveArea_AL_Pixel	4500	SIZE_CCD_AL_PX AFX # px
Astro:AF:CCD_LightSensitiveArea_AL_Pixel	4500	SIZE_CCD_AL_PX AF11 # px
Astro:BBP:S01:CCD_LightSensitiveArea_AL_Pixel	4500	SIZE_CCD_AL_PX BBP1 # px
<pre>Astro:BBP:S02:CCD_LightSensitiveArea_AL_Pixel</pre>	2600	SIZE_CCD_AL_PX BBPX # px
Spectro:SSM:CCD_LightSensitiveArea_AL_Pixel	336	SIZE_CCD_AL_PX SSM # px
Spectro:MBP:CCD_LightSensitiveArea_AL_Pixel	336	SIZE_CCD_AL_PX MBPX # px
# CCD across-scan size #		
Astro:CCD_LightSensitiveArea_AC_Pixel	1966	SIZE_CCD_AC_PX AXX # px
Astro:CCD_LightSensitiveArea_AC_Pixel	1966	SIZE_CCD_AC_PX BXX # px
Spectro:SSM:CCD_LightSensitiveArea_AC_Pixel	3930	SIZE_CCD_AC_PX MXX # px

AL Separation between two CCDs; the format should be changed to take account of dead zones between modules # F.C TODO : The 2 following should be later replaced by the accurate CCD position in mm in the focal plane. # F.C The exposure time should then be computed from the CCD position and from the TDI period.

# F.C The exposure time should then be computed from the COD	posicion	and from the fbr period.
Astro:ASM:CCD_DeadZone_AL_MilliMeter	4.	SEP_MARGIN_CCD_MM ASM #
Astro:AF:CCD_DeadZone_AL_MilliMeter	4.	SEP_MARGIN_CCD_MM AFX #
Astro:BBP:CCD_DeadZone_AL_MilliMeter	4.	SEP_MARGIN_CCD_MM BXX #
Spectro:MBP:CCD_DeadZone_AL_MilliMeter	1.3	SEP_MARGIN_CCD_MM MXX # param database
Spectro:SSM:CCD_DeadZone_AL_MilliMeter	1.3	SEP_MARGIN_CCD_MM SSM # param database
-		-
Spectro:SSM:CCD_TDIPeriod	16.370	TDI_PERIOD_MS MXX # ms
# Integration time #		
Astro:ASM:CCD_ExposureTime	1.91518	TIME_EXPOSURE_CCD_SEC ASM # s
Astro:AF:CCD_ExposureTime	3.31473	TIME_EXPOSURE_CCD_SEC AF1 # s
Astro:AF:CCD_ExposureTime	3.31473	TIME_EXPOSURE_CCD_SEC AFX # s
Astro:AF:CCD_ExposureTime	3.31473	TIME_EXPOSURE_CCD_SEC AF11 # s
Astro:BBP:S01:CCD_ExposureTime	3.31473	TIME_EXPOSURE_CCD_SEC BBP1 # s
Astro:BBP:S02:CCD_ExposureTime	1.91518	TIME_EXPOSURE_CCD_SEC BBPX # s
Spectro:SSM:CCD_ExposureTime	5.5	TIME_EXPOSURE_CCD_SEC SSM # s
Spectro:MBP:CCD_ExposureTime	5.5	TIME_EXPOSURE_CCD_SEC MBPX # s
# Saturation value		
Astro:CCD_PixelFullWellCapacity_ImageSection	190000	SIZE_SATUR_CCD_E- AXX # e-
Astro:CCD_PixelFullWellCapacity_ImageSection	190000	SIZE_SATUR_CCD_E- BXX # e-
Spectro:CCD_PixelFullWellCapacity_ImageSection	140000	SIZE_SATUR_CCD_E- MXX # e-
<pre># Read-Out Noise for detection/confirmation #</pre>		
Astro:ASM:CCD_DetectionNoise_TypicalTotal	13.9	NB_RON_CCD_E- ASM # e-
Astro:AF:S01:CCD_DetectionNoise_TypicalTotal	15.8	NB_RON_CCD_E- AF1 # e-
Astro:AF:S02:CCD_DetectionNoise_TypicalTotal	7.7	NB_RON_CCD_E- AFX # e-
Astro:AF:S11:CCD_DetectionNoise_TypicalTotal	7.9	NB_RON_CCD_E- AF11 # e-
Astro:BBP:S01:CCD_DetectionNoise_TypicalTotal	8.3	NB_RON_CCD_E- BBP1 # e-
Spectro:SSM:CCD_DetectionNoise_TypicalTotal	8.7	
Spectro:MBP:CCD_DetectionNoise_TypicalTotal	9.2	NB_RON_CCD_E- MBP1 # e-
	0.2	
# Magnitude zero-points #		
<pre># *JOS*: parameter database names in following block to be up</pre>	dated	
Astro:ASM:Magnitude_ZeroPoint_G	25.5857	VAL_ZEROPOINT_CCD_MAG
Astro:AF:Magnitude_ZeroPoint_G	25.5857	VAL_ZEROPOINT_CCD_MAG
Astro:AF:Magnitude_ZeroPoint_G	25.5857	VAL_ZEROPOINT_CCD_MAG AFX # mag
$\texttt{Astro:BBP:Magnitude_ZeroPoint_GB453}$	25.5857	VAL_ZEROPOINT_CCD_MAG BBP1 # mag incorrect
Astro:BBP:Magnitude_ZeroPoint_GB561	25.5857	VAL_ZEROPOINT_CCD_MAG BBP2 # mag incorrect
Astro:BBP:Magnitude_ZeroPoint_GB674	25.5857	VAL_ZEROPOINT_CCD_MAG BBP3 # mag incorrect
Astro:BBP:Magnitude_ZeroPoint_GB803	25.5857	VAL_ZEROPOINT_CCD_MAG BBP4 # mag incorrect
Astro:BBP:Magnitude_ZeroPoint_GB932	25.5857	VAL_ZEROPOINT_CCD_MAG BBP5 # mag incorrect
Spectro:SSM:Magnitude_ZeroPoint_GS	24.6501	VAL_ZEROPOINT_CCD_MAG SSM # mag

JOS:CCD_CalibrationMagnitude_G 24.6501 VAL_ZEROPOINT_CCD_MAG MBPX # mag TBChanged # Unit: -# Basic, Scalar: true # Description: serial samples read from the serial register # Source: Gaia-JdB-011 NB_MAX_AC_SAM AF1 # overlapping allowed NB_MAX_AC_SAM AFX # sample Astro:AF:S01:CCD_NumberOfSerialSamples 216 Astro:AF:S02:CCD_NumberOfSerialSamples 17 Astro:AF:S11:CCD_NumberOfSerialSamples 34 NB_MAX_AC_SAM AF11 # sample Astro:BBP:CCD_NumberOfSerialSamples 34 NB_MAX_AC_SAM BXX # sample # Source: GAIA-CUO-117, 31/03/2003, Table 9 Spectro:MBP:CCD_NumberOfSerialSamples NB_MAX_AC_SAM MBPX # sample 450 NB_MAX_AC_SAM SSM # sample Spectro:SSM:CCD_NumberOfSerialSamples 3930 DETECTION / CONFIRMATION STEP # # Unit: pixel # Basic: yes (depends on the asymmetry of the PSF) # Scalar: true (but we should have one value for each of the 10 ASM1 and ASM2) # Description: adopted signal/noise threshold for detection/confirmation algorithm # Source: this document (TBC) NB_SNR1_CCD_ ASM # Astro:ASM:Detection_Threshold_SNRPixel 1.45 Astro:AF_S01:Detection_Threshold_SNRPixel 1. NB_SNR1_CCD_ AF1 # NB_SNR1_CCD_ SSM # ? no PSF available yet Spectro:SSM:S01:Detection_Threshold_SNRPixel 1.45 Spectro:SSM:S02:Detection_Threshold_SNRPixel 1. NB_SNR1_CCD_ MBP1 # ? no PSF available yet NB_SNR2_CCD_ ASM # Astro:ASM:Detection_Threshold_SNRPObject 4.3 NB_SNR2_CCD_ AF1 # Astro:AF:S01:Detection_Threshold_SNRPObject 5 4.3 NB_SNR2_CCD_ SSM # ? no PSF available yet Spectro:SSM:S01:Detection_Threshold_SNRPObject Spectro:SSM:S02:Detection_Threshold_SNRPObject 5 NB_SNR2_CCD_ MBP1 # ? no PSF available yet # Unit: pixel # Basic: yes (depends in fact on the asymmetry of the PSF) # Scalar: true (we should have one value for each of the 10 ASM1 and ASM2) # Description: correction to the confirmation position # Source: this document (TBC) Astro:ASM:Detection_CorrectiveShift_AL_Position 0.118 SIZE_SHIFT_AL_PX ASM # px Astro:AF:S01:Detection_CorrectiveShift_AL_Position 0.124 SIZE_SHIFT_AL_PX AF1 # px Spectro:SSM:S01:Detection_CorrectiveShift_AL_Position SIZE_SHIFT_AL_PX SSM # ? no PSF available yet 0 SIZE_SHIFT_AL_PX MBP1 # ? no PSF available yet Spectro:SSM:S02:Detection_CorrectiveShift_AL_Position 0 Astro:ASM:Detection_CorrectiveShift_AC_Position 0.02 SIZE_SHIFT_AC_PX ASM # px SIZE_SHIFT_AC_PX AF1 # px Astro:AF:S01:Detection_CorrectiveShift_AC_Position 0.0115 Spectro:SSM:S01:Detection_CorrectiveShift_AC_Position SIZE_SHIFT_AC_PX SSM # ? no PSF available yet 0 SIZE_SHIFT_AC_PX MBP1 # ? no PSF available yet Spectro:SSM:S02:Detection_CorrectiveShift_AC_Position 0 # Unit: pixel # Basic, Scalar: true # Description: Tolerance between detection and confirmation of an object (maximum difference in pixel) # Source: this document (TBC) (provisional until implementation of strategy taking account of duplicity and NEO) Astro:FoV1:S01:Confirmation_Threshold_AL_Position 3 SEP_DETCONF_AL_PX AF1 # px *JOS* For ASM1-AF1 ${\tt Astro:FoV2:S01:Confirmation_Threshold_AL_Position}$ SEP_DETCONF_AL_PX AF1 # px *JOS* For ASM2-AF1 3 Spectro:SSM:S02:Confirmation_Threshold_AL_Position 3 SEP_DETCONF_AL_PX SSM # px Astro:FoV1:S01:Confirmation_Threshold_AC_Position 3 SEP_DETCONF_AC_PX AF1 # px *JOS* For ASM1-AF1 Astro:FoV2:S01:Confirmation_Threshold_AC_Position SEP_DETCONF_AC_PX AF1 # px *JOS* For ASM2-AF1 3 SEP_DETCONF_AC_PX SSM # px ${\tt Spectro:SSM:S02:Confirmation_Threshold_AC_Position}$ 6 # Unit: -# Basic, Scalar: true # Description: Tolerance between detection and confirmation of an object (maximum relative e- difference) # Source: this document (TBC) (provisional until implementation of strategy taking account of duplicity and NEO) Astro:FoV1:S01:Confirmation_Threshold_Flux 2. DELTA_DETCONF_FLUX AF1 # ratio e- *JOS* For ASM1-A DELTA_DETCONF_FLUX AF1 # ratio e- *JOS* For ASM2-Astro:FoV2:S01:Confirmation_Threshold_Flux 2. Spectro:SSM:S02:Confirmation_Threshold_Flux DELTA_DETCONF_FLUX SSM # ratio e-10.

the following (not yet defined) parameters would be needed for SSM cross-matching... Nature:NearEarthObject_VelocityDistributionStandardDeviation_AL 30.0 SIGMA_NEO_SPEED_MASS XXX # The sigma of the NEO speed of Spectro:SSM:Detection_ObjectSize_AL_Maximum 256 MAX_DETECTEDOBJECT_AL_SIZE_PX SSM # The maximum object AL_SIZE_PX SSM # The maximum obje

Spectro:SSM:CrossMatching_Threshold_AL_SNRPosition Spectro:SSM:CrossMatching_Threshold_AC_SNRPosition	<pre>2 SIGMACLIP_DETECTED_POS_PX SSM # Two objects c 2 *JOS*</pre>	listant of r
Spectro:SSM:Detection_Precision_AL_Position	0.4 SIGMA_AL_DETECTED_POS_PX SSM # The sigma AL of	on the cent
Spectro:SSM:Detection_Precision_AC_Position	0.4 SIGMA_AC_DETECTED_POS_PX SSM # The sigma AC of	on the cent

# WINDOW STRATEGY	#	
*********	#######################################	
# Unit: mag		
# Basic, Scalar: true		
# Description: Limiting magnitude above which a star is not cons	dered at all for on-board selection	
# Source: Gaia-JdB-011 (or F. Arenou, 8 Nov 03, private communic		
Astro:AF:SO1:MagnitudeRange_Maximum_Selection	22 LIMIT_MAGNITUDE AF1	
Astro:AF:S02:MagnitudeRange_Maximum_Selection	22 LIMIT_MAGNITUDE AFX	
Astro:AF:S11:MagnitudeRange_Maximum_Selection	20 LIMIT_MAGNITUDE AF11	
Astro:BBP:MagnitudeRange_Maximum_Selection	22 LIMIT_MAGNITUDE BXX 22 LIMIT_MAGNITUDE SSM	
Spectro:SSM:MagnitudeRange_Maximum_Selection Spectro:MBP:MagnitudeRange_Maximum_Selection	_	
phecero:upt:makurendeuanke_wayumum_perecerou	22 LIMIT_MAGNITUDE MBPX	
# Unit: mag		
# Basic, Scalar: true		
<pre># Description: fainter magnitude for this class of object</pre>		
# Source: GAIA-CUO-117, 31/03/2003, Fig 1		
Astro:MagnitudeRange_Maximum_VeryBright	8 LIMIT_SUPBRIGHT_MAG AXX # magnitude limit	super-bright
Astro:MagnitudeRange_Maximum_VeryBright	8 LIMIT_SUPERIGHT_MAG BXX #	
Spectro:MBP:MagnitudeRange_Maximum_VeryBright	0 LIMIT_SUPBRIGHT_MAG MXX #	
Astro:MagnitudeRange_Maximum_Bright	12 LIMIT_BRIGHTMED_MAG AXX # magnitude limit	bright-int
Astro:MagnitudeRange_Maximum_Bright	12 LIMIT_BRIGHTMED_MAG BXX #	0118110 1
Spectro:MBP:MagnitudeRange_Maximum_Bright	9 LIMIT_BRIGHTMED_MAG MXX #	
Astro:MagnitudeRange_Maximum_Medium	16 LIMIT_MEDFAINT_MAG AXX # magnitude limit i	intermediate
Astro:MagnitudeRange_Maximum_Medium Spectro:MBP:MagnitudeRange_Maximum_Medium	16 LIMIT_MEDFAINT_MAG BXX # 14 LIMIT_MEDFAINT_MAG MXX #	
opectro:nor:nor:nagnroudenange_naximum_nearum	14 LIMIT_MEDFAINT_MAG MXX #	
Astro:MagnitudeRange_Maximum_Faint	20 LIMIT_FAINTVFAINT_MAG AXX # magnitude limi	it faint-ve
Astro:MagnitudeRange_Maximum_Faint	20 LIMIT_FAINTVFAINT_MAG BXX #	
Spectro:MBP:MagnitudeRange_Maximum_Faint	20 LIMIT_FAINTVFAINT_MAG MXX #	
# Unit: -		
# Basic, Scalar: true		
<pre># Description: Does objects have two possible window AL size in</pre>	his zone? (0=NO, 1=YES)	
# Source: GAIA-CUO-117, 31/03/2003, Table 7		
<pre>Astro:AF:S01:CCD_WindowSize_AL_Variable</pre>	O TWO_WINDOW_SIZES AF1	
<pre>Astro:AF:S02:CCD_WindowSize_AL_Variable</pre>	0 TWO_WINDOW_SIZES AFX	
Astro:AF:S11:CCD_WindowSize_AL_Variable	1 TWO_WINDOW_SIZES AF11	
Astro:BBP:CCD_WindowSize_AL_Variable	1 TWO_WINDOW_SIZES BXX	
Spectro:CCD_WindowSize_AL_Variable	0 TWO_WINDOW_SIZES MXX	
# Unit: mag		
# Basic, Scalar: true		
# Description: Magnitude limit between 2 vertical half-windows	o avoid saturation) and one window	
# Source: GAIA-CUO-117, 31/03/2003, Fig 1B		
Astro:MagnitudeRange_Maximum_Saturation	12 LIMIT_TWO_ONE_WINDOW AXX #	
Astro:MagnitudeRange_Maximum_Saturation	12 LIMIT_TWO_ONE_WINDOW BXX #	
Spectro:MagnitudeRange_Maximum_Saturation	O LIMIT_TWO_ONE_WINDOW MXX #	
# Unit: mag		
# Onit: mag # Basic, Scalar: true		
<pre># Description: Magnitude limit between a high priority star and</pre>	low priority one	
# Source: OBD-JC-01	101 11101105 010	
Astro:AF:S01:MagnitudeRange_Maximum_LowPriority	16 LIMIT_HIGH_LOW_PRIORITY AF1 #	
Astro:AF:S02:MagnitudeRange_Maximum_LowPriority	16 LIMIT_HIGH_LOW_PRIORITY AFX #	
Astro:AF:S11:MagnitudeRange_Maximum_LowPriority	0 LIMIT_HIGH_LOW_PRIORITY AF11 # Erik: no prior	rity for br
Astro:BBP:MagnitudeRange_Maximum_LowPriority	16 LIMIT_HIGH_LOW_PRIORITY BXX #	
Spectro:MagnitudeRange_Maximum_LowPriority	16 LIMIT_HIGH_LOW_PRIORITY MXX #	
# Unit: -		
# Basic, Scalar: true		

Basic, Scalar: true
Description: tiling strategy is adopted for multiple objects (0=FALSE, 1=TRUE)

# Source: OBD-FAJCL-01				
# Source: UBD-FAJCL-01 Astro:AF:S01:CCD_WindowPavement	0	ACTIVATE_PAVING	AF1 #	
Astro:AF:SO2:CCD_WindowPavement	ů 1	ACTIVATE_PAVING		
Astro:AF:S11:CCD_WindowPavement	0	ACTIVATE_PAVING		
Astro:BBP:CCD_WindowPavement	1	ACTIVATE_PAVING		
Spectro:CCD_WindowPavement	0	ACTIVATE_PAVING	MXX #	
H To the second				
# Unit: mag # Basic, Scalar: true				
<pre># Dasic, Stalar. file # Description: faintest magnitude where the tiling strategy can</pre>	be used			
# Source: OBD-FAJCL-01	oo aboa			
Astro:MagnitudeRange_Maximum_WindowPavement	20	MAX_MAG_PAVEMENT	AFX # mag	
Astro:MagnitudeRange_Maximum_WindowPavement	20	MAX_MAG_PAVEMENT	BXX # mag	
Spectro:MagnitudeRange_Maximum_WindowPavement	20	MAX_MAG_PAVEMENT	MXX # mag	
# Unit: -				
# Basic, Scalar: true				
<pre># Description: Allowing window overlapping (0=FALSE, 1=TRUE)</pre>				
# Source: GAIA-CUO-117, 31/03/2003, Sect. 7.4				
Astro:AF:S01:CCD_WindowOverlap	1	ALLOW_OVERLAP	AF1 #	
Astro:AF:SO2:CCD_WindowOverlap	0	ALLOW_OVERLAP		
Astro:AF:S11:CCD_WindowOverlap	0	ALLOW_OVERLAP		
Astro:BBP:CCD_WindowOverlap	0	ALLOW_OVERLAP		
Spectro:MBP:CCD_WindowOverlap	0	ALLOW_OVERLAP	MXX #	
# Unit: pixel				
# Basic, Scalar: true				
# Description: for a double-star strategy 1B2S, one big window o	nly is ta	aken below this separati	on	
# Source: DMS-SS-02				
Astro:AF:S02:CCD_WindowSeparation_Faint	8		AXX # max separat	
Astro:BBP:CCD_WindowSeparation_Faint	8		BXX # max separat	
Spectro:MBP:CCD_WindowSeparation_Faint	0	SEP_FAINT_DMS_PX	MXX # nothing spe	cial in MBP
Astro:AF:S02:CCD_WindowSeparation_Medium	12	SEP_MED_DMS_PX	AXX # max separat	ion between do
Astro:BBP:CCD_WindowSeparation_Medium	12	SEP_MED_DMS_PX	BXX # max separat	
Spectro:MBP:CCD_WindowSeparation_Medium	0	SEP_MED_DMS_PX	MXX # nothing spe	
######################################		#		
# Unit: pixel				
# Basic, Scalar: true				
# Description: size of samples, hardware binning				
# Source: GAIA-CUO-117, 31/03/2003, Fig 1				
Astro:ASM:CCD_NumberOfPixelsPerSample_AL	2	SIZE_SAMP_AL_PX	ASM # px	
Astro:ASM:CCD_NumberOfPixelsPerSample_AC	2	SIZE_SAMP_AC_PX	ASM # px	
Spectro:SSM:CCD_NumberOfPixelsPerSample_AL	1	SIZE_SAMP_AL_PX	SSM # px	
Spectro:SSM:CCD_NumberOfPixelsPerSample_AC	1	SIZE_SAMP_AC_PX	SSM # px	
# Unit: comple				
# Unit: sample # Basic, Scalar: true				
# Description: size of read windows				
<pre># Description: size of read windows # Source: GAIA-CUO-117, 31/03/2003, Fig 1</pre>	16	5 SIZE_SUPERWINDOW_AL_	SAM AF1 #	
# Description: size of read windows		5 SIZE_SUPERWINDOW_AL_ 5 SIZE_SUPERWINDOW_AC_		
<pre># Description: size of read windows # Source: GAIA-CUO-117, 31/03/2003, Fig 1 Astro:AF:S01:CCD_NumberOfSamplesPerWindow_AL_ReadVeryBright Astro:AF:S01:CCD_NumberOfSamplesPerWindow_AC_ReadVeryBright</pre>				
<pre># Description: size of read windows # Source: GAIA-CUO-117, 31/03/2003, Fig 1 Astro:AF:S01:CCD_NumberOfSamplesPerWindow_AL_ReadVeryBright Astro:AF:S01:CCD_NumberOfSamplesPerWindow_AC_ReadVeryBright # Unit: pixel</pre>				
<pre># Description: size of read windows # Source: GAIA-CUO-117, 31/03/2003, Fig 1</pre>				
<pre># Description: size of read windows # Source: GAIA-CUO-117, 31/03/2003, Fig 1 Astro:AF:S01:CCD_NumberOfSamplesPerWindow_AL_ReadVeryBright Astro:AF:S01:CCD_NumberOfSamplesPerWindow_AC_ReadVeryBright # Unit: pixel # Basic, Scalar: true # Description: size of read samples, hardware binning</pre>				
<pre># Description: size of read windows # Source: GAIA-CUO-117, 31/03/2003, Fig 1 Astro:AF:SO1:CCD_NumberOfSamplesPerWindow_AL_ReadVeryBright Astro:AF:SO1:CCD_NumberOfSamplesPerWindow_AC_ReadVeryBright # Unit: pixel # Basic, Scalar: true # Description: size of read samples, hardware binning # Source: GAIA-CUO-117, 31/03/2003, Table 6</pre>	e	5 SIZE_SUPERWINDOW_AC_	SAM AF1 #	
<pre># Description: size of read windows # Source: GAIA-CUO-117, 31/03/2003, Fig 1 Astro:AF:S01:CCD_NumberOfSamplesPerWindow_AL_ReadVeryBright Astro:AF:S01:CCD_NumberOfSamplesPerWindow_AC_ReadVeryBright # Unit: pixel # Basic, Scalar: true # Description: size of read samples, hardware binning</pre>			SAM AF1 # AF1 #	
<pre># Description: size of read windows # Source: GAIA-CUO-117, 31/03/2003, Fig 1 Astro:AF:S01:CCD_NumberOfSamplesPerWindow_AL_ReadVeryBright Astro:AF:S01:CCD_NumberOfSamplesPerWindow_AC_ReadVeryBright # Unit: pixel # Basic, Scalar: true # Description: size of read samples, hardware binning # Source: GAIA-CUO-117, 31/03/2003, Table 6 Astro:AF:S01:CCD_NumberOfPixelsPerSample_AL_VeryBright Astro:AF:S01:CCD_NumberOfPixelsPerSample_AC_VeryBright</pre>	6 1 4	5 SIZE_SUPERWINDOW_AC_ SIZE_SUPERSAMP_AL_PX SIZE_SUPERSAMP_AC_PX	SAM AF1 # AF1 # AF1 #	
<pre># Description: size of read windows # Source: GAIA-CUO-117, 31/03/2003, Fig 1 Astro:AF:S01:CCD_NumberOfSamplesPerWindow_AL_ReadVeryBright Astro:AF:S01:CCD_NumberOfSamplesPerWindow_AC_ReadVeryBright # Unit: pixel # Basic, Scalar: true # Description: size of read samples, hardware binning # Source: GAIA-CUO-117, 31/03/2003, Table 6 Astro:AF:S01:CCD_NumberOfPixelsPerSample_AL_VeryBright Astro:AF:S01:CCD_NumberOfPixelsPerSample_AC_VeryBright # Unit, Basic, Scalar, Description, Source: see above, except fo</pre>	1 4 r *_VeryH	5 SIZE_SUPERWINDOW_AC_ SIZE_SUPERSAMP_AL_PX SIZE_SUPERSAMP_AC_PX Faint where Source: this	SAM AF1 # AF1 # AF1 # s document (TBC)	
<pre># Description: size of read windows # Source: GAIA-CUO-117, 31/03/2003, Fig 1 Astro:AF:S01:CCD_NumberOfSamplesPerWindow_AL_ReadVeryBright Astro:AF:S01:CCD_NumberOfSamplesPerWindow_AC_ReadVeryBright # Unit: pixel # Basic, Scalar: true # Description: size of read samples, hardware binning # Source: GAIA-CUO-117, 31/03/2003, Table 6 Astro:AF:S01:CCD_NumberOfPixelsPerSample_AL_VeryBright Astro:AF:S01:CCD_NumberOfPixelsPerSample_AC_VeryBright # Unit, Basic, Scalar, Description, Source: see above, except fo Astro:AF:S01:CCD_NumberOfSamplesPerWindow_AL_ReadBright</pre>	1 4 16 SJ	5 SIZE_SUPERWINDOW_AC_ SIZE_SUPERSAMP_AL_PX SIZE_SUPERSAMP_AC_PX Faint where Source: this IZE_BRIGHTWINDOW_AL_SAM	SAM AF1 # AF1 # AF1 # s document (TBC) AF1 #	
<pre># Description: size of read windows # Source: GAIA-CUO-117, 31/03/2003, Fig 1 Astro:AF:S01:CCD_NumberOfSamplesPerWindow_AL_ReadVeryBright Astro:AF:S01:CCD_NumberOfSamplesPerWindow_AC_ReadVeryBright # Unit: pixel # Basic, Scalar: true # Description: size of read samples, hardware binning # Source: GAIA-CUO-117, 31/03/2003, Table 6 Astro:AF:S01:CCD_NumberOfPixelsPerSample_AL_VeryBright Astro:AF:S01:CCD_NumberOfPixelsPerSample_AC_VeryBright # Unit, Basic, Scalar, Description, Source: see above, except fo Astro:AF:S01:CCD_NumberOfSamplesPerWindow_AL_ReadBright Astro:AF:S01:CCD_NumberOfSamplesPerWindow_AC_ReadBright</pre>	1 4 16 SI 6 SI	5 SIZE_SUPERWINDOW_AC_ SIZE_SUPERSAMP_AL_PX SIZE_SUPERSAMP_AC_PX Faint where Source: this IZE_BRIGHTWINDOW_AL_SAM IZE_BRIGHTWINDOW_AC_SAM	SAM AF1 # AF1 # AF1 # s document (TBC) AF1 # AF1 #	
<pre># Description: size of read windows # Source: GAIA-CUO-117, 31/03/2003, Fig 1 Astro:AF:S01:CCD_NumberOfSamplesPerWindow_AL_ReadVeryBright Astro:AF:S01:CCD_NumberOfSamplesPerWindow_AC_ReadVeryBright # Unit: pixel # Basic, Scalar: true # Description: size of read samples, hardware binning # Source: GAIA-CUO-117, 31/03/2003, Table 6 Astro:AF:S01:CCD_NumberOfPixelsPerSample_AL_VeryBright Astro:AF:S01:CCD_NumberOfPixelsPerSample_AC_VeryBright # Unit, Basic, Scalar, Description, Source: see above, except fo Astro:AF:S01:CCD_NumberOfSamplesPerWindow_AL_ReadBright Astro:AF:S01:CCD_NumberOfSamplesPerWindow_AC_ReadBright Astro:AF:S01:CCD_NumberOfPixelsPerSample_AL_Bright</pre>	1 4 16 SJ 6 SJ 1 SJ	5 SIZE_SUPERWINDOW_AC_ SIZE_SUPERSAMP_AL_PX SIZE_SUPERSAMP_AC_PX Faint where Source: this IZE_BRIGHTWINDOW_AL_SAM IZE_BRIGHTWINDOW_AC_SAM	SAM AF1 # AF1 # AF1 # s document (TBC) AF1 # AF1 # 51 #	
<pre># Description: size of read windows # Source: GAIA-CUO-117, 31/03/2003, Fig 1 Astro:AF:S01:CCD_NumberOfSamplesPerWindow_AL_ReadVeryBright Astro:AF:S01:CCD_NumberOfSamplesPerWindow_AC_ReadVeryBright # Unit: pixel # Basic, Scalar: true # Description: size of read samples, hardware binning # Source: GAIA-CUO-117, 31/03/2003, Table 6 Astro:AF:S01:CCD_NumberOfPixelsPerSample_AL_VeryBright Astro:AF:S01:CCD_NumberOfPixelsPerSample_AC_VeryBright # Unit, Basic, Scalar, Description, Source: see above, except fo Astro:AF:S01:CCD_NumberOfSamplesPerWindow_AL_ReadBright Astro:AF:S01:CCD_NumberOfSamplesPerWindow_AC_ReadBright</pre>	1 4 16 SJ 6 SJ 1 SJ	5 SIZE_SUPERWINDOW_AC_ SIZE_SUPERSAMP_AL_PX SIZE_SUPERSAMP_AC_PX Faint where Source: this IZE_BRIGHTWINDOW_AL_SAM IZE_BRIGHTWINDOW_AC_SAM	SAM AF1 # AF1 # AF1 # s document (TBC) AF1 # AF1 # 51 #	
<pre># Description: size of read windows # Source: GAIA-CUO-117, 31/03/2003, Fig 1 Astro:AF:S01:CCD_NumberOfSamplesPerWindow_AL_ReadVeryBright Astro:AF:S01:CCD_NumberOfSamplesPerWindow_AC_ReadVeryBright # Unit: pixel # Basic, Scalar: true # Description: size of read samples, hardware binning # Source: GAIA-CUO-117, 31/03/2003, Table 6 Astro:AF:S01:CCD_NumberOfPixelsPerSample_AL_VeryBright Astro:AF:S01:CCD_NumberOfPixelsPerSample_AC_VeryBright # Unit, Basic, Scalar, Description, Source: see above, except fo Astro:AF:S01:CCD_NumberOfSamplesPerWindow_AL_ReadBright Astro:AF:S01:CCD_NumberOfSamplesPerWindow_AC_ReadBright Astro:AF:S01:CCD_NumberOfPixelsPerSample_AL_Bright</pre>	1 4 16 SJ 6 SJ 1 SJ 2 SJ	5 SIZE_SUPERWINDOW_AC_ SIZE_SUPERSAMP_AL_PX SIZE_SUPERSAMP_AC_PX Faint where Source: this IZE_BRIGHTWINDOW_AL_SAM IZE_BRIGHTWINDOW_AC_SAM	SAM AF1 # AF1 # s document (TBC) AF1 # AF1 # F1 # F1 #	

Astro:AF:SO1:CCD_NumberOfSamplesPerWindow_AC_ReadMedium Astro:AF:SO1:CCD_NumberOfPixelsPerSample_AL_Medium Astro:AF:SO1:CCD_NumberOfPixelsPerSample_AC_Medium	6 1 2	SIZE_MEDIUMWINDOW_AC_SAM AF1 # SIZE_MEDIUMSAMP_AL_PX AF1 # px SIZE_MEDIUMSAMP_AC_PX AF1 # px
Astro:AF:S01:CCD_NumberOfSamplesPerWindow_AL_ReadFaint Astro:AF:S01:CCD_NumberOfSamplesPerWindow_AC_ReadFaint Astro:AF:S01:CCD_NumberOfPixelsPerSample_AL_Faint	12 6	SIZE_FAINTWINDOW_AL_SAM AF1 # SIZE_FAINTWINDOW_AC_SAM AF1 #
Astro:AF:S01:CCD_NumberUfPixelsPerSample_AL_raint Astro:AF:S01:CCD_NumberOfPixelsPerSample_AC_Faint	1 2	SIZE_FAINTSAMP_AL_PX AF1 # px SIZE_FAINTSAMP_AC_PX AF1 # px
Astro:AF:S01:CCD_NumberOfSamplesPerWindow_AL_ReadVeryFaint Astro:AF:S01:CCD_NumberOfSamplesPerWindow_AC_ReadVeryFaint	12 6	SIZE_VFAINTWINDOW_AL_SAM AF1 # SIZE_VFAINTWINDOW_AC_SAM AF1 #
Astro:AF:SO1:CCD_NumberOfPixelsPerSample_AL_VeryFaint Astro:AF:SO1:CCD_NumberOfPixelsPerSample_AC_VeryFaint	1 2	SIZE_VFAINTSAMP_AL_PX AF1 # px SIZE_VFAINTSAMP_AC_PX AF1 # px
# Unit, Basic, Scalar, Description, Source: see above		
Astro:AF:SO2:CCD_NumberOfSamplesPerWindow_AL_ReadVeryBright Astro:AF:SO2:CCD_NumberOfSamplesPerWindow_AC_ReadVeryBright	16 6	SIZE_SUPERWINDOW_AL_SAM AFX # SIZE_SUPERWINDOW_AC_SAM AFX #
Astro:AF:SO2:CCD_NumberOfPixelsPerSample_AL_VeryBright Astro:AF:SO2:CCD_NumberOfPixelsPerSample_AC_VeryBright	1 4	SIZE_SUPERSAMP_AL_PX AFX # SIZE_SUPERSAMP_AC_PX AFX #
Astro:AF:SO2:CCD_NumberOfSamplesPerWindow_AL_ReadBright Astro:AF:SO2:CCD_NumberOfSamplesPerWindow_AC_ReadBright	16 6	SIZE_BRIGHTWINDOW_AL_SAM AFX # SIZE_BRIGHTWINDOW_AC_SAM AFX #
Astro:AF:SO2:CCD_NumberOfPixelsPerSample_AL_Bright	1	SIZE_BRIGHTSAMP_AL_PX AFX #
Astro:AF:S02:CCD_NumberOfPixelsPerSample_AC_Bright	2	SIZE_BRIGHTSAMP_AC_PX AFX #
Astro:AF:SO2:CCD_NumberOfSamplesPerWindow_AL_ReadMedium Astro:AF:SO2:CCD_NumberOfSamplesPerWindow_AC_ReadMedium	12 1	SIZE_MEDIUMWINDOW_AL_SAM AFX # SIZE_MEDIUMWINDOW_AC_SAM AFX #
Astro:AF:S02:CCD_NumberOfPixelsPerSample_AL_Medium	1	SIZE_MEDIUMSAMP_AL_PX AFX # px
Astro:AF:SO2:CCD_NumberOfPixelsPerSample_AC_Medium	12	SIZE_MEDIUMSAMP_AC_PX AFX # px
Astro:AF:SO2:CCD_NumberOfSamplesPerWindow_AL_ReadFaint	6	SIZE_FAINTWINDOW_AL_SAM AFX #
Astro: AF: S02: CCD_NumberOfSamplesPerWindow_AC_ReadFaint	1	SIZE_FAINTWINDOW_AC_SAM AFX #
Astro:AF:SO2:CCD_NumberOfPixelsPerSample_AL_Faint Astro:AF:SO2:CCD_NumberOfPixelsPerSample_AC_Faint	1 12	SIZE_FAINTSAMP_AL_PX AFX # px SIZE_FAINTSAMP_AC_PX AFX # px
$\verb"Astro:AF:S02:CCD_NumberOfSamplesPerWindow_AL_ReadVeryFaint"$	6	SIZE_VFAINTWINDOW_AL_SAM AFX #
Astro: AF: S02: CCD_NumberOfSamplesPerWindow_AC_ReadVeryFaint	1	SIZE_VFAINTWINDOW_AC_SAM AFX #
Astro:AF:SO2:CCD_NumberOfPixelsPerSample_AL_VeryFaint Astro:AF:SO2:CCD_NumberOfPixelsPerSample_AC_VeryFaint	1 12	SIZE_VFAINTSAMP_AL_PX AFX # px SIZE_VFAINTSAMP_AC_PX AFX # px
# Unit, Basic, Scalar, Description, Source: see above Astro:AF:S11:CCD_NumberOfSamplesPerWindow_AL_ReadVeryBright	16	SIZE_SUPERWINDOW_AL_SAM AF11 #
Astro:AF:S11:CCD_NumberOfSamplesPerWindow_AC_ReadVeryBright	6	SIZE_SUPERWINDOW_AL_SAM AFII # SIZE_SUPERWINDOW_AC_SAM AF11 #
Astro:AF:S11:CCD_NumberOfPixelsPerSample_AL_VeryBright	1	SIZE_SUPERSAMP_AL_PX AF11 #
Astro:AF:S11:CCD_NumberOfPixelsPerSample_AC_VeryBright	4	SIZE_SUPERSAMP_AC_PX AF11 #
Astro:AF:S11:CCD_NumberOfSamplesPerWindow_AL_ReadBright Astro:AF:S11:CCD_NumberOfSamplesPerWindow_AC_ReadBright	16 6	SIZE_BRIGHTWINDOW_AL_SAM AF11 # SIZE_BRIGHTWINDOW_AC_SAM AF11 #
Astro: AF: S11: CCD_NumberOfPixelsPerSample_AL_Bright	1	SIZE_BRIGHTSAMP_AL_PX AF11 #
Astro:AF:S11:CCD_NumberOfPixelsPerSample_AC_Bright	2	
$\verb Astro:AF:S11:CCD_NumberOfSamplesPerWindow_AL_ReadMedium \\$	68	SIZE_MEDIUMWINDOW_AL_SAM AF11 #
Astro:AF:S11:CCD_NumberOfSamplesPerWindow_AC_ReadMedium	1	SIZE_MEDIUMWINDOW_AC_SAM AF11 #
Astro:AF:S11:CCD_NumberOfPixelsPerSample_AL_Medium Astro:AF:S11:CCD_NumberOfPixelsPerSample_AC_Medium	1 14	SIZE_MEDIUMSAMP_AL_PX AF11 # px SIZE_MEDIUMSAMP_AC_PX AF11 # px
Astro:AF:S11:CCD_NumberOfSamplesPerWindow_AL_ReadFaint	68 1	SIZE_FAINTWINDOW_AL_SAM_AF11 #
Astro:AF:S11:CCD_NumberOfSamplesPerWindow_AC_ReadFaint Astro:AF:S11:CCD_NumberOfPixelsPerSample_AL_Faint	1 1	SIZE_FAINTWINDOW_AC_SAM AF11 # SIZE_FAINTSAMP_AL_PX AF11 # px
Astro:AF:S11:CCD_NumberOfPixelsPerSample_AC_Faint	14	
Astro:AF:S11:CCD_NumberOfSamplesPerWindow_AL_ReadVeryFaint Astro:AF:S11:CCD_NumberOfSamplesPerWindow_AC_ReadVeryFaint	6 1	SIZE_VFAINTWINDOW_AL_SAM AF11 # SIZE_VFAINTWINDOW_AC_SAM AF11 #
Astro:AF:S11:CCD_NumberOfPixelsPerSample_AL_VeryFaint	1	SIZE_VFAINTWINDOW_RC_SAM AFIT # SIZE_VFAINTSAMP_AL_PX AF11 # px
Astro:AF:S11:CCD_NumberOfPixelsPerSample_AC_VeryFaint	14	
# Unit: pixel # Basic, Scalar: true		
# Description: alternate AL size of read windows		
# Source: GAIA-CUO-117, 31/03/2003, Table 7		
Astro:AF:S11:CCD_NumberOfSamplesPerShortWindow_AL_VeryBright	16	SIZE2_SUPERWINDOW_AL_SAM AF11 #

Astro:AF:S11:CCD_NumberOfSamplesPerShortWindow_AL_Bright Astro:AF:S11:CCD_NumberOfSamplesPerShortWindow_AL_Medium # Source: OBD-CoCo-07 (Arenou et al., V 1.1), Sect. 4.1	<pre>16 SIZE2_BRIGHTWINDOW_AL_SAM AF11 # 12 SIZE2_MEDIUMWINDOW_AL_SAM AF11 # 12 SIZE2 FAINTHINDOW AL SAM AF11 #</pre>
Astro:AF:S11:CCD_NumberOfSamplesPerShortWindow_AL_Faint Astro:AF:S11:CCD_NumberOfSamplesPerShortWindow_AL_VeryFaint	12 SIZE2_FAINTWINDOW_AL_SAM AF11 # 6 SIZE2_VFAINTWINDOW_AL_SAM AF11 #
<pre># Unit: sample # Basic, Scalar: true # Description: size of read windows # Source: GAIA-CU0-117, 31/03/2003, Fig 1</pre>	16 SIZE_SUPERWINDOW_AL_SAM BXX # 6 SIZE_SUPERWINDOW_AC_SAM BXX #
# Unit: pixel # Basic, Scalar: true	
<pre># Description: size of read samples, hardware binning # Source: GAIA-CUO-117, 31/03/2003, Table 6</pre>	
Astro:BBP:CCD_NumberOfPixelsPerSample_AL_VeryBright Astro:BBP:CCD_NumberOfPixelsPerSample_AC_VeryBright	1 SIZE_SUPERSAMP_AL_PX BXX # 4 SIZE_SUPERSAMP_AC_PX BXX #
Astro:BBP:CCD_NumberOfSamplesPerWindow_AL_ReadBright Astro:BBP:CCD_NumberOfSamplesPerWindow_AC_ReadBright Astro:BBP:CCD_NumberOfPixelsPerSample_AL_Bright Astro:BBP:CCD_NumberOfPixelsPerSample_AC_Bright	16 SIZE_BRIGHTWINDOW_AL_SAM BXX # 6 SIZE_BRIGHTWINDOW_AC_SAM BXX # 1 SIZE_BRIGHTSAMP_AL_PX BXX # 2 SIZE_BRIGHTSAMP_AC_PX BXX #
Astro:BBP:CCD_NumberOfSamplesPerWindow_AL_ReadMedium Astro:BBP:CCD_NumberOfSamplesPerWindow_AC_ReadMedium	16 SIZE_MEDIUMWINDOW_AL_SAM BXX # 1 SIZE_MEDIUMWINDOW_AC_SAM BXX #
Astro:BBP:CCD_NumberOfPixelsPerSample_AL_Medium Astro:BBP:CCD_NumberOfPixelsPerSample_AC_Medium	1 SIZE_MEDIUMSAMP_AL_PX BXX # px 12 SIZE_MEDIUMSAMP_AC_PX BXX # px
Astro:BBP:CCD_NumberOfSamplesPerWindow_AL_ReadFaint Astro:BBP:CCD_NumberOfSamplesPerWindow_AC_ReadFaint Astro:BBP:CCD_NumberOfPixelsPerSample_AL_Faint Astro:BBP:CCD_NumberOfPixelsPerSample_AC_Faint	16 SIZE_FAINTWINDOW_AL_SAM BXX # 1 SIZE_FAINTWINDOW_AC_SAM BXX # 1 SIZE_FAINTSAMP_AL_PX BXX # px 12 SIZE_FAINTSAMP_AC_PX BXX # px
Astro:BBP:CCD_NumberOfSamplesPerWindow_AL_ReadVeryFaint Astro:BBP:CCD_NumberOfSamplesPerWindow_AC_ReadVeryFaint Astro:BBP:CCD_NumberOfPixelsPerSample_AL_VeryFaint Astro:BBP:CCD_NumberOfPixelsPerSample_AC_VeryFaint	 SIZE_VFAINTWINDOW_AL_SAM BXX # SIZE_VFAINTWINDOW_AC_SAM BXX # SIZE_VFAINTSAMP_AL_PX BXX # px SIZE_VFAINTSAMP_AC_PX BXX # px
# Unit: pixel # Basic, Scalar: true	
<pre># Dusic, Surial, Star # Description: alternate AL size of read windows # Source: Gaia-JdB-011 (or Arenou, 18 November 2003, priv. comm) Astro:BBP:CCD_NumberOfSamplesPerShortWindow_AL_VeryBright Astro:BBP:CCD_NumberOfSamplesPerShortWindow_AL_Bright Astro:BBP:CCD_NumberOfSamplesPerShortWindow_AL_Medium Astro:BBP:CCD_NumberOfSamplesPerShortWindow_AL_Faint Astro:BBP:CCD_NumberOfSamplesPerShortWindow_AL_VeryFaint</pre>	 16 SIZE2_SUPERWINDOW_AL_SAM BXX # 16 SIZE2_BRIGHTWINDOW_AL_SAM BXX # 12 SIZE2_MEDIUMWINDOW_AL_SAM BXX # 12 SIZE2_FAINTWINDOW_AL_SAM BXX # 6 SIZE2_VFAINTWINDOW_AL_SAM BXX #
<pre># Unit: sample # Basic, Scalar: true # Description: size of read windows # Source: GAIA-CUO-117, 31/03/2003, Fig 1 Spectro:MBP:CCD_NumberOfSamplesPerWindow_AL_ReadVeryBright Spectro:MBP:CCD_NumberOfSamplesPerWindow_AC_ReadVeryBright</pre>	8 SIZE_SUPERWINDOW_AL_SAM MBPX # 7 SIZE_SUPERWINDOW_AC_SAM MBPX #
<pre># Unit: pixel # Basic, Scalar: true # Description: size of read samples, hardware binning # Course of the dia at (00 (0000 Fin d))</pre>	
# Source: GAIA-CUO-117, 31/03/2003, Fig 1 Spectro:MBP:CCD_NumberOfPixelsPerSample_AL_VeryBright Spectro:MBP:CCD_NumberOfPixelsPerSample_AC_VeryBright	1 SIZE_SUPERSAMP_AL_PX MBPX # 2 SIZE_SUPERSAMP_AC_PX MBPX #
Spectro:MBP:CCD_NumberOfSamplesPerWindow_AL_ReadBright Spectro:MBP:CCD_NumberOfSamplesPerWindow_AC_ReadBright Spectro:MBP:CCD_NumberOfPixelsPerSample_AL_Bright Spectro:MBP:CCD_NumberOfPixelsPerSample_AC_Bright	8 SIZE_BRIGHTWINDOW_AL_SAM MBPX # 7 SIZE_BRIGHTWINDOW_AC_SAM MBPX # 1 SIZE_BRIGHTSAMP_AL_PX MBPX # 2 SIZE_BRIGHTSAMP_AC_PX MBPX #
Spectro:MBP:CCD_NumberOfSamplesPerWindow_AL_ReadMedium Spectro:MBP:CCD_NumberOfSamplesPerWindow_AC_ReadMedium	8 SIZE_MEDIUMWINDOW_AL_SAM MBPX # 3 SIZE_MEDIUMWINDOW_AC_SAM MBPX #

Spectro:MBP:CCD_NumberOfPixelsPerSample_AL_Medium	1	SIZE_MEDIUMSAMP_AL_PX MBPX # px
<pre>Spectro:MBP:CCD_NumberOfPixelsPerSample_AC_Medium</pre>	5	SIZE_MEDIUMSAMP_AC_PX MBPX # px
Spectro:MBP:CCD_NumberOfSamplesPerWindow_AL_ReadFaint	8	SIZE_FAINTWINDOW_AL_SAM MBPX #
Spectro:MBP:CCD_NumberOfSamplesPerWindow_AC_ReadFaint	1	SIZE_FAINTWINDOW_AC_SAM MBPX #
<pre>Spectro:MBP:CCD_NumberOfPixelsPerSample_AL_Faint</pre>	1	SIZE_FAINTSAMP_AL_PX MBPX # px
<pre>Spectro:MBP:CCD_NumberOfPixelsPerSample_AC_Faint</pre>	5	SIZE_FAINTSAMP_AC_PX MBPX # px
Spectro:MBP:CCD_NumberOfSamplesPerWindow_AL_ReadVeryFaint	8	SIZE_VFAINTWINDOW_AL_SAM MBPX #
Spectro:MBP:CCD_NumberOfSamplesPerWindow_AC_ReadVeryFaint	1	SIZE_VFAINTWINDOW_AC_SAM MBPX #
<pre>Spectro:MBP:CCD_NumberOfPixelsPerSample_AL_VeryFaint</pre>	1	SIZE_VFAINTSAMP_AL_PX MBPX # px
Spectro:MBP:CCD_NumberOfPixelsPerSample_AC_VeryFaint	5	SIZE_VFAINTSAMP_AC_PX MBPX # px

- # Unit: pixel
- # Basic, Scalar: true

Description: The AL and AC window shift admitted for selection

- # Source: this document (TBC)
 - Astro:AF:SO1:CCD_WindowShift_AL_VeryBright Astro:AF:SO1:CCD_WindowShift_AL_Bright Astro:AF:SO1:CCD_WindowShift_AL_Bright Astro:AF:SO1:CCD_WindowShift_AL_Faint Astro:AF:SO1:CCD_WindowShift_AL_VeryFaint Astro:AF:SO1:CCD_WindowShift_AC_VeryBright Astro:AF:SO1:CCD_WindowShift_AC_Bright Astro:AF:SO1:CCD_WindowShift_AC_Medium Astro:AF:SO1:CCD_WindowShift_AC_Faint Astro:AF:SO1:CCD_WindowShift_AC_Faint Astro:AF:SO1:CCD_WindowShift_AC_VeryFaint Astro:AF:SO1:CCD_WindowShift_AL_VeryBright

Astro:AF:S02:CCD_WindowShift_AL_Bright Astro:AF:S02:CCD_WindowShift_AL_Medium Astro:AF:S02:CCD_WindowShift_AL_Faint Astro:AF:S02:CCD_WindowShift_AL_VeryFaint Astro:AF:S02:CCD_WindowShift_AC_VeryBright Astro:AF:S02:CCD_WindowShift_AC_Bright Astro:AF:S02:CCD_WindowShift_AC_Medium Astro:AF:S02:CCD_WindowShift_AC_Faint Astro:AF:S02:CCD_WindowShift_AC_Faint

Astro:AF:S11:CCD_ShortWindowShift_AL_VeryBright Astro:AF:S11:CCD_ShortWindowShift_AL_Bright Astro:AF:S11:CCD_ShortWindowShift_AL_Medium Astro:AF:S11:CCD_ShortWindowShift_AL_Faint Astro:AF:S11:CCD_ShortWindowShift_AL_VeryFaint

Astro:BBP:CCD_WindowShift_AL_VeryBright Astro:BBP:CCD_WindowShift_AL_Bright Astro:BBP:CCD_WindowShift_AL_Medium Astro:BBP:CCD_WindowShift_AL_Faint Astro:BBP:CCD_WindowShift_AL_VeryFaint Astro:BBP:CCD_WindowShift_AC_VeryBright Astro:BBP:CCD_WindowShift_AC_Bright Astro:BBP:CCD_WindowShift_AC_Medium Astro:BBP:CCD_WindowShift_AC_Faint Astro:BBP:CCD_WindowShift_AC_VeryFaint Astro:BBP:CCD_WindowShift_AC_VeryFaint Astro:BBP:CCD_ShortWindowShift_AL_Bright Astro:BBP:CCD_ShortWindowShift_AL_Faint Astro:BBP:CCD_ShortWindowShift_AL_Faint Astro:BBP:CCD_ShortWindowShift_AL_Faint

Spectro:MBP:CCD_WindowShift_AL_VeryBright Spectro:MBP:CCD_WindowShift_AL_Bright Spectro:MBP:CCD_WindowShift_AL_Medium Spectro:MBP:CCD_WindowShift_AL_Faint Spectro:MBP:CCD_WindowShift_AL_VeryFaint Spectro:MBP:CCD_WindowShift_AC_VeryBright

2	SHIFT_AL_SUPERWINDOW_PX	AF1	#	рх			
2	SHIFT_AL_BRIGHTWINDOW_PX	AF1	#	рх			
2	SHIFT_AL_MEDIUMWINDOW_PX	AF1	#	рх			
2	SHIFT_AL_FAINTWINDOW_PX	AF1	#	px			
2	SHIFT_AL_VFAINTWINDOW_PX	AF1	#	px			
0	SHIFT_AC_SUPERWINDOW_PX	AF1	#	px			
0	SHIFT_AC_BRIGHTWINDOW_PX	AF1	#	рх			
0	SHIFT_AC_MEDIUMWINDOW_PX	AF1	#	px			
1	SHIFT_AC_FAINTWINDOW_PX	AF1	#	px			
1	SHIFT_AC_VFAINTWINDOW_PX	AF1	#	px			
2	SHIFT_AL_SUPERWINDOW_PX	AFX	#	рх			
2	SHIFT_AL_BRIGHTWINDOW_PX	AFX	#	рх			
2	SHIFT_AL_MEDIUMWINDOW_PX	AFX	#	px			
1	SHIFT_AL_FAINTWINDOW_PX	AFX	#	рх			
1	SHIFT_AL_VFAINTWINDOW_PX	AFX	#	- px			
0	SHIFT_AC_SUPERWINDOW_PX	AFX	#	px			
0	SHIFT_AC_BRIGHTWINDOW_PX	AFX	#	px			
0	SHIFT_AC_MEDIUMWINDOW_PX	AFX	#	рх			
1	SHIFT_AC_FAINTWINDOW_PX	AFX	#	- px			
1	SHIFT_AC_VFAINTWINDOW_PX	AFX	#	- px			
				-			
2	SHIFT2_AL_SUPERWINDOW_PX	AF11	#	px;	shift	of	alternative
2	SHIFT2_AL_BRIGHTWINDOW_PX	AF11	#	px;	shift	of	alternative
2	SHIFT2_AL_MEDIUMWINDOW_PX	AF11	#	px;	shift	of	alternative
1	SHIFT2_AL_FAINTWINDOW_PX	AF11	#	px;	shift	of	alternative
1	SHIFT2_AL_VFAINTWINDOW_PX	AF11	#	px;	shift	of	alternative
2	SHIFT_AL_SUPERWINDOW_PX	BXX	#	рх			
2	SHIFT_AL_BRIGHTWINDOW_PX	BXX	#	рх			
2	SHIFT_AL_MEDIUMWINDOW_PX	BXX	#	рх			
2	SHIFT_AL_FAINTWINDOW_PX	BXX	#	рх			
2	SHIFT_AL_VFAINTWINDOW_PX	BXX	#	рх			
0		BXX	#	рх			
0	SHIFT_AC_BRIGHTWINDOW_PX	BXX	#	рх			
0	SHIFT_AC_MEDIUMWINDOW_PX	BXX	#	рх			
1	SHIFT_AC_FAINTWINDOW_PX	BXX	#	px			
1	SHIFT_AC_VFAINTWINDOW_PX	BXX	#	рх			
2	SHIFT2_AL_SUPERWINDOW_PX	BXX	#	px;	shift	of	alternative
2	SHIFT2_AL_BRIGHTWINDOW_PX	BXX	#	px;	shift	of	alternative
2	SHIFT2_AL_MEDIUMWINDOW_PX	BXX	#	px;	shift	of	alternative
0	SHIFT2_AL_FAINTWINDOW_PX	BXX	#	px;	shift	of	alternative
0	SHIFT2_AL_VFAINTWINDOW_PX	BXX	#	px;	shift	of	alternative
2	SHIFT_AL_SUPERWINDOW_PX	MXX	#	рх			
2	SHIFT_AL_BRIGHTWINDOW_PX	MXX	#	рх			
2	SHIFT_AL_MEDIUMWINDOW_PX	MXX	#	рх			
2	SHIFT_AL_FAINTWINDOW_PX	MXX	#	рх			
2	SHIFT_AL_VFAINTWINDOW_PX	MXX	#	рх			
0	SHIFT_AC_SUPERWINDOW_PX	MXX	#	рх			
				-			

<pre>Spectro:MBP:CCD_WindowShift_AC_Bright</pre>	0	SHIFT_AC_BRIGHTWINDOW_PX	MXX # px
Spectro:MBP:CCD_WindowShift_AC_Medium	0	SHIFT_AC_MEDIUMWINDOW_PX	MXX # px
<pre>Spectro:MBP:CCD_WindowShift_AC_Faint</pre>	1	SHIFT_AC_FAINTWINDOW_PX	MXX # px
<pre>Spectro:MBP:CCD_WindowShift_AC_VeryFaint</pre>	1	SHIFT_AC_VFAINTWINDOW_PX	MXX # px

13 Appendix B: history of changes

This may be found in the file **HISTORY**:

01-Mar-04	Version 2.0 + Delivered to ESTEC		
GD:	A major rewrite		
	+ multi-threaded support for concurrent processing and specifying the degree of interdependence of tasks		
	+ line-based processing (on the pixel-side):		
	ColumnsPack structure suppressed		
	line-based connected component (CC) labeling		
	removal of object-parts meging		
	reduced buffering		
	+ updated thresholds for filtering out false		
	detections on bright stars		
	+ valid port to alphas and Mac		
	+ server mode to pipeline successive tasks and		
	control TDI		
	+ new options:		
	bright star windowing		
	setting max AL size of CCs		
	setting max number of simultaneous CCs		
	backgroung pixel size (AL & AC)		
	setting the number of threads for object processing		
	- removed old selection and confirmation		
	(incompatible with the new detection framework)		
	+ standard GNU processing of options		
selection:	+ bug corrections, for bright windows smaller than medium		
	in AF11 causing superposition of windows, values in constant.h too small for SSM, error messages for SPL in BBP, reading		
	input now ignores whats remains at the end of the line,		
	superposition of windows for super stars		
	+ assuming now coordinates in pixel not sample as input		
	+ switched to SSM designation instead of MBSM		
xcorr: this	is a new cross-matching program (see OBD-FC-03)		
01 0-+ 02	Numerican D. 00004		
01-Oct-03	Version 2.0RC1		
т	Update (not a full delivery) delivered to ESTEC		
GD:			
	conversion of code to integers		
	deblending now done towards an hardware implementation		
	see OBD-SM-06		
+	a lot of optimizations		
	see OBD-SM-07		
selecti	on: this is a new selection program (see OBD-JC-01)		

25-Mar-0	-	Version 1.5.1 Delivered to ESTEC
1.5->1.5	GD:	removed the call to rintf not supported by the systems which are not C99 compliant and replaced with a local routine
21-Mar-0)3	Version 1.5 + Delivered to ESTEC
1.4 -> 1	L.5	
	+ + +	(major modif) suppress false detections on spikes (major modif) implemented a one-pass efficient deblending scheme using unfiltered data to improve DMS detection fixed all memory leaks rewrote the merging of bodies from different column packs to handle complex geometries (bidirectional merging) moved the discarding of truncated sources to selection various optimisations and profiling
	SWA:	
		removed spurious double peak due to discretisation added option for peak test
	select: +	one neglectible correction
	common: +	exclude odd psf oversampling (for SWA)
	+ + +	simulations use Gibis 1.3, with bias added (BZERO) and motion accounted for - in astro only, not in MBP/RVSM! GaiaStat now as a function of colour, position, sub-pixel plot*.pl procedures added support for sextractor and APM added (softwares to be obtained separately from the authors, and modified to be able to read FITS files with BITPIX=-16) best thresholds used (to get less than 1 false/1 million samp)
 8-Jan-03	3	Version 1.4.1 + Delivered to ESTEC
1.4.1	This re	lease corrects issues related to portability + e-/ADU conversion
	+ +	correction of never finishing recursion due to float precision detection thresholds changed more than 2 objects are managed when compound object negative background due to mirror at CCD edge suppressed
	select: +	memory bug at beginning of program corrected. EDA structure now

```
dynamically allocated.
             + star leak when duplication seem to have been resolved
       common:
             + manages bitpix=-16 for FITS reading
       tests:
             + simulations now follow Gibis 1.2 with ADU and gain - Spectro
               aberrations not yet included
             + bitpix=-16 to cope with bright stars
             + confirmation thresholds in SelectConfig changed
12-Dec-02
              Version 1.4
             + Delivered to ESTEC
1.3 \rightarrow 1.4
       GD:
             + major modification of source deblending
             + added duplication on the fly (-dimal and -dimac options)
             + several memory leaks corrected
             + put Fits reading and khistat in a common directory
             + 3-sigma clipping on background
             + replaced background/source by background/pixel on output +
               number of object pixels added
       SWA:
             + added duplication on the fly
             + put Fits reading in a common directory
       select:
             + hack to limit RVS spectra to brighter than faint_mag only
             + shift in position corrected
             + added duplication on the fly
             + put Fits reading and khistat in a common directory
       common:
             + directory created due to avoid source duplication
             + files replaced by logical links in directories above
             + correction for e- -> ADU in FITS reading
       tests:
             + SelectConfig modified for new RVS design
             + added GaiaErrors.pl which shows false and non-detections
             + GaiaStat.pl and .ds9.ans have pos/mag tolerance as arguments
             + .cat file correction in GaiaDupli.pl
       docs:
             + OBD_SM_02, bug SNR SWA, arguments of V2.4 added
             + OBD-HC-01, final version
  _____
1.2 -> 1.3
             Major changes:
       select:
             + takes into account MBP and RVS case (no special treatment)
             + uses an image with no noise and makes the binning
               and noise on the fly
             + overlapping bug in AF2 (and others) correcting
```

```
+ WY00 windows bug (0 separation between half windows accepted)
            + oversizes memory allocation to cope with RVS patches
            + isolated input/output in inputoutput.c
      tests:
            + complete redefinition of constants names in SelectConfig.txt
            + adding MBP and RVS constants in SelectConfig.txt
            + allow 2x2 in SM
            + adding images in MBSM and RVSM
      docs:
      Minor changes:
      GD:
            + RFits.c may read images with bitpix=-16
            + log into stdout, not stderr
            + one slight correction of syntax
            + changed version number to be consistent with documentation
      SWA:
            + inputs changes, no default value, pixThres added
            + image read in float
            + bitpix=-16 accepted
            + writes ds9 regions
      tests:
            + remove files before creation in perl programs
            + installation of logical links to cope with CVS
            + added a statistics analysis in .ds9.ans
  _____
10-Oct-02
             Version 1.2
            Preliminary version sent to ESTEC
            includes GD 1.2, SWA, select 1.0, extrapolation
            draft documentation
 _____
Software items sent to ESTEC before:
06-Apr-02 APM translated to C
19-Sep-01
            SWA (C) and APM (Fortran), documents OBD-CoCo-01,OBD-CoCo-02
```