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Summary :In this paper, we are concerned with the problem of estimating the parameters of a gaussian 
mixture density. Here we tackle the problem of analysing the convergence stability of the SEM process by 
performing several independent runs. Then, the results of the most stable SEM solution are compared to 
classical clustering and classification techniques. The method is applied to samples of A type population 
I stars. 
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1.  Introduction, notations and statistical background 
 Of interest in this paper is the parametric family of mixture of k normal multivariate 
densities, i.e the family of density functions of the form 
   f(x,θ) = p1f1(x|m1,Σ1) +.....+ pkfk(x|mk,Σk),  x∈Rn 
where the proportions pi, i=1-k are constrained to be nonnegative and to amount to one. Each 
component fi, i=1-k of the mixture is a n-multivariate gaussian density with n-vector mean 

mi∈Rn  and (n x n) covariance matrix Σi.. Much has been written  on methodology for 
estimating the unknown parameters  θ(k) = (pi, mi, Σi, i=1-k) . For a review, we refer to 
(Titterington & al 1985; Redner &Walker 1984). A class of iterative procedures for numerically 
approximating maximum likelihood estimates is known as EM algorithm.which is an algorithm 
used for incomplete data problems (Dempster & al 1977). 
  It acts as follows for  a N-sample of observations   (xj, j=1-N), N>>k, xj∈Rn  . Let θc = 

(pic, mic, Σic, i=1-k) be a current approximate maximizer of the log-likelihood function of the 

sample L(θ), and θc+1 the next  one.The Expectation step computes for  i=1-k , j=1-N, 

    pc(i,xj) = picfi(xj|mic, Σic) / f(xj,θc) 
that is an estimate of the posterior probability that xj belongs to the ith component given the 

approximate estimate θc. Then, the Maximization step of the EM algorithm yields θc+1 
maximizing L(.), given by 
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 The EM algorithm (Redner & Walker 1984) possesses several attractive properties (low 
computational cost, convergence, constraints on θ satisfied) compared to that of several 
alternative methods (Newton, scoring, quasi-Newton) for numerically approximating maximum 
likelihood estimates. The SEM algorithm, described in  (Celeux &Diebolt, 1986), is a recent 
improvement of this algorithm : it incorporates a Stochastic step to accelerate the (a priori low) 
convergence. Nevertheless, even in the context of gaussian univariate mixture, the resulting 
likelihood surface is littered with singularities (Titterington & al 1985, ex. 4.3.2, p83). 
However, with a good initialization - obtained, for instance through graphical methods 
(Bougeard & al, 1989b)- and reasonable sample size, one can expect a (S.)E.M. iteration 
sequence to converge to a local maximizer  of the log-likelihood function. 
 
 Of interest here is the convergence stability of the SEM algorithm in application to the 
study of the 3 dimensional x=(U,V,W) velocity distribution of 2 samples of A type population I 
stars, defined in Grenier & al (1985): an  A2V sample (N=97) and an Ap sample (N=36). 
 
2.  Pertinence of a gaussian mixture model for the A2V sample   
 On a bidimensional graph UxV, one can foresee the presence of a potential mixture of two 
populations. The pertinence of the use of a parametric gaussian mixture model was shown in 
(Bougeard & al, 1989c) using the U component of the velocity. Nevertheless, it is known to be 
unsufficient to check univariate k' gaussian mixture for each variable U,V,W in order to be able 
to reject the possibility of a k mixture, k>k' (for example, see Titterington & al, 1985, fig 4.10, 
p68 ). So, a multivariate analysis has to be performed. 
 
3.  Numerical stability of the SEM algorithm 
 Assuming that the distribution of the (U,V,W) velocity sample is a mixture of multivariate 
gaussian components, we study the convergence stability of the SEM algorithm by performing 
several independent runs : each run represents a 200 iteration sequence. 
 
3.1.  Firstly, 31 runs of the SEM algorithm have been performed for the A2V sample using an 
initialization with K=3 as upper bound of the number of components. Fig 1  shows the 
respective estimates in U found at each run. A 3 mixture solution appears as very unstable : 19 
runs lead to a two mixture solution, 6 runs find no mixture. 
3.2.  At this stage, the same process has been performed by initializing SEM with K=2. The 
results are summarized on Fig 2 for the proportions (p1>p2) found at each run and on Fig 3 for 
the distributions in U,V,W.Table 1 gives the most  stable solution (21 runs over 31) .Due to the 
fact that it is a multidimensional analysis, the result is slightly different in the U estimations 
from those obtained in an univariate context by Soubiran & al (1989), Bougeard & al (1989c). 
For interpretation in terms of star formation bursts, see Gómez & al (1989). 
 
4.  Statistical stability of the SEM estimates 
 The SEM algorithm provides also the probability for each star to belong to one of the 
estimated components (see Section 1). We compare the resulting classification with the results 
of classical multivariate data analysis methods. 
 Firstly, a Principal Component analysis (PCA) was performed on the correlation matrix 
(variables:U,V,W), by which it became apparent that the first axis (53% of the variance) was 
highly correlated with  U,V lying in the galactic plane. Axis 2 (33.5% of the variance) is 
correlated with W perpendicular to this plane.The centers of the two gaussian components, 
projected as supplementary points, are highly correlated with the first axis and 7 stars are not in 
the same class if we perform a SEM univariate classification only on the U component. 



 A hierarchical classification was also performed with the reciprocal neighbour algorithm 
(Lebeaux, 1986; Lebart & al, 1984). The two clusters obtained by the top-level of the hierarchy 
are in good agreement with the SEM clusters (Bougeard & al, 1989a,b). 
 Finally, a linear discriminant analysis based on Fisher linear discriminant function and 
Mahalanobis distance was also performed to assess the discrimination between the two groups 
found by SEM . Only 15 stars which were on group 1 according to SEM are affected to group 2 
; this yields to an agreement of 84.5% of well classified stars. 
 
5.  Sensitivity of the SEM algorithm to the sample size 
 Finally, 31 SEM runs have been performed on the Ap sample (N=36), using an 
initialization with K=3 as upper bound of the number of the components. Two components 
were expected (Gómez & al,1989), but Fig 4 shows a high instability (no mixture is found in 20 
runs over 31). The main reason is that the sample size is far too small and components are 
overlapping too much. We note, in the studied application, that a 3 (resp. 2) mixture model 
yields a SEM estimation of 2+3x3+3x6=29 (resp. 19) unconstrained parameters. 
 
6.  Conclusion 
 If the sample size is large enough and if the components are well separated, the SEM 
algorithm has been seen to provide a reasonable good convergence in the estimation of the 
parameters of gaussian mixtures in stellar kinematics. But it cannot be used rashly in other 
cases. In the particular case of the A2V sample studied here, SEM results have appeared as 
nearly stable and in good agreement with other clustering and classification techniques. 
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Table 1 :  Sample A2V (U,V,W) -  SEM stable solution 
 

Component #1 Component #2 
Proportion : 0.64 Proportion : 0.36 

 m1(u) m1(v) m1(w)  
 -20.8 -14.3  -6.8  

m2(u) m2(v) m2(w) 
 11.4  1.7  -7.4 

  variance-covariance matrix 
   176.9    10.8    17.5 
    10.8   103.4   -21.6 
    17.5   -21.6    75.3 

  variance-covariance matrix	
     
50.2     3.8   -13.2 	
      
3.8    33.6    -3.8 	
    -
13.2    -3.8    51.2 








