r-Process Abundances in the EMP Star CS 31082-001

Cesar H. Siqueira Mello Jr.

IAG-USP, São Paulo, Brazil GEPI - Observatoire de Paris

M. Spite, B. Barbuy, F. Spite, **E. Caffau**, **V. Hill**, F. Primas, B. Plez, R. Cayrel, S. Wanajo, J. Andersen, B. Nordström, C. Sneden, T.C. Beers, P. Bonifacio, P. François, and P. Molaro

Context

- The origin of the r-process elements
- The ESO large programme "First Stars"

The EMP star CS 31082-001

- STIS/HST observations
- Abundance determinations
- Comparisons with r-process models

Abundance comparisons between r-process stars and the Solar System r-process values

First Peak Problem <u>Multiple sources</u> of the lightest trans-Fe elements

p-process "weak" s-process "weak" r-process light element primary process vp-process charged-particle reactions

Same or different site(s)??

Need for more stellar observations

Same process in the early Galaxy and in the Solar System **Universal process???**

First stars V - Abundance patterns from C to Zn and supernova yields in the early Galaxy^{*,**}

First stars VI – Abundances of C, N, O, Li, and mixing in extremely metal-poor giants. Galactic evolution of the light elements*

First stars VII - Lithium in extremely metal poor dwarfs*,**

VIII. Enrichment of the neutron-capture elements in the early Galaxy*

15 articles 2002 – 2011

+ Several others...

```
Astronomy
Astrophysics
```

First stars. I. The extreme *r*-element rich, iron-poor halo giant CS 31082-001

Implications for the r-process site(s) and radioactive cosmochronology^{*}

V. Hill¹ B. Plez², R. Cayrel³, T. C. Beers⁴, B. Nordström^{5,6}, J. Andersen⁶, M. Spite¹, F. Spite¹, B. Barbuy⁷, P. Bonifacio⁸, E. Depagne¹, P. François³, and F. Primas⁹

Actinide Boost

Th and U enhanced relative to the general r-process level

the actinides had a **different nucleosynthesis history** than the stable third-peak elements

a new piece at the problem of the r-process elements

in addition...

UV observations

UV observations are crucial to examine the full range of the n-capture elements

Cowan et al. (2005)

First stars

XV. Third-peak *r*-process element and actinide abundances in the uranium-rich star CS31082-001*

B. Barbuy¹, M. Spite², V. Hill³, F. Primas⁴, B. Plez⁵, R. Cayrel², F. Spite², S. Wanajo^{6,7}, C. Siqueira Mello Jr.¹, J. Andersen^{8,9}, B. Nordström⁸, T. C. Beers¹⁰, P. Bonifacio², P. François², and P. Molaro¹¹

STIS/HST Observations of CS 31082-001

the <u>first</u> abundance determination for <u>all</u> <u>measurable 3rd peak elements</u> for an EMP r-II star

Element	Ζ	$\log \epsilon(X)_{\odot}$	$\log \epsilon(X)_*$	$\log \epsilon(X)_*$	$\log \epsilon(X)_*$	log [X/Fe]*
			VLT	HST	adopted	adopted
Os	76	+1.40	+0.43	-0.07	+0.18	+1.72
Ir	77	+1.38	+0.20	+0.18	+0.20	+1.72
Pt	78	+1.62	—	+0.30	+0.30	+1.46
Au	79	+0.92	_	-1.00	-1.00	+0.89
Pb	82	+1.75	-0.55	-0.65	-0.65	+0.25
Bi	83	+0.71	_	-0.40	-0.40	+1.83
Th	90	+0.17	-0.98	_	-0.98	+1.84
U	92	-0.07	-1.92	_	-1.92	+1.68

First Stars XVI. STIS/HST abundances of heavy-elements in the uranium-rich star CS 31082-001*

C. Siqueira Mello Jr.^{1,2}, M. Spite², B. Barbuy¹, F. Spite², E. Caffau², V. Hill³, F. Primas⁴, B. Plez⁵, R. Cayrel⁶, S. Wanajo^{7,8}, J. Andersen^{9,10}, B. Nordström⁹, C. Sneden¹¹, T.C. Beers¹², P. Bonifacio², P. François⁶, and P. Molaro¹³ in preparation

Abundance determination

- OSMARCS LTE model atmosphere (Gustafsson et al. 2008) - Spectrum synthesis code Turbospectrum (Alvarez & Plez 1998)

- Turbospectrum molecular line lists

- Atomic line lists from the VALD2 compilation (Kupka et al. 1999)

- Updated oscillator strengths from recent literature

- Adopted light element abundances: Hill et al. (2002), Cayrel et al. (2004), and Spite et al. (2005) - The stellar parameters from Hill et al. (2002) $T_{off} = 4825 \pm 50 \text{ K}$ $\log g = 1.5 \pm 0.3$ $[Fe/H] = -2.9 \pm 0.1$ $v_{1} = 1.8 \pm 0.2 \text{ km s}^{-1}$ STIS/HST **UVES/VLT** 2600 - 3070 Å 3000 - 3800 Å S/N ~ 40 (required 45 orbits) S/N ~ 20 - 100 R = 30000R = 75000

Results and Conclusion

New detections using the STIS/HST spectra:

- \rightarrow <u>first peak:</u> new Ge and Mo abundances
- \rightarrow second peak: new Lu, Ta, W, and Re abundances
- → third peak: new Pt, Au, and Bi abundances

New NLTE+3D Pb abundance

Comparisons between models and observations

 \rightarrow combination of processes to reproduce the full range of observations