Age-dating large samples of stars : the Gaia context

Céline Guédé, Yveline Lebreton, Carine Babusiaux, Misha Haywood Gepi - Observatoire de Paris SF2A Atelier S03, 6 juin 2012

Céline Guédé - SF2A - 05-06-12

Introduction

- Importance of ages
 - Formation and evolution of Galaxy
 - Exoplanets : characterization, structure
- Methods based on stellar models
 - Adjustment with isochrones / evolutionary tracks
 - Asteroseismology
- Empirical methods

Age via stellar models

Observables : magnitude, effective temperature, metallicity

Adjustment on isochrones/tracks : but degeneracy

Jorgensen & Lindegren (2005)

Bayesian estimation :

- $f(\tau, [Fe/H], m) \propto f_0(\tau, [Fe/H], m) \times L(\tau, [Fe/H], m)$
- PDF : f a posteriori, f. a priori
- Likelihood

$$L = \left(\prod_{i=1}^{n} \frac{l}{(2\pi)^{1/2} \sigma_{i}}\right) \exp\left(-\frac{\chi^{2}}{2}\right)$$

with
$$\chi^2 = \sum_{i=1}^{n} \left(\frac{q_i^{obs} - q_i([Fe/H], m, \tau)}{\sigma_i} \right)^2$$

• Methods adapted and modified after Da Silva et al. (2006)

Choice of the a priori

- Models
 - Basti (Pietrinferni et al., 2004), Padova (Girardi et al., 2000)
 - tracks or isochrones
 - resolution of the grid
- Initial Mass Function (IMF)
 - Kroupa (2002)
- No metallicity distribution function (MDF)
- Stellar formation rate (SFR)
 - Flat between 0 to 14 Gyr, 0 elsewhere

Gaia simulated catalog

- Sample of 10 000 simulated stars, random selection of the :

 metallicity (MDF), mass (Kroupa's IMF) and age (SFR) in the Basti grid
- Gaia "Star" specification
 - G>6
 - σ_{π} depends on G and (V-I)
 - $\sigma_G = \sigma_V = 10^{-3}$ mag
 - $\sigma_{T_{eff}} = 0.3\%$ at G ≤ 15 , rises linearly to $\sigma_{T_{eff}} = 4\%$ at G=20
 - $\sigma_{\rm [Fe/H]} = 0.3$

-
$$\sigma_{A_v} = 10\%$$

Gaia simulated catalog

- Determination of $\sigma_{_{\mathrm{M}_{\mathrm{v}}}}$

$$\sigma_{\mathrm{M}_{\mathrm{v}}} = \sqrt{\sigma_{\mathrm{m}_{\mathrm{v}}}^{2} + \sigma_{\mathrm{A}_{\mathrm{v}}}^{2} + \left(\frac{5}{\ln 10}\frac{\sigma_{d}}{d}\right)^{2}}$$

• Choice : keep star if $\frac{\sigma_{\pi}}{\pi} < 10\%$

Fixed distances or distances to particular objects :

100 pc, I kpc and 10 kpc
Hyades (46pc), Pleiades
(135 pc) and NGC 6791
(4.1 kpc)

• Compare ages from inversion and "true" ages

From 1 kpc to 8 kpc

- 60 % of stars have $\frac{\sigma_{\tau}}{\tau} > 10\%$
- 3 problematic regions :
 - Close to the ZAMS
 - Massive stars in the upper MS
 - Red giant branch

Less than 1 kpc

• 75 % of stars have $\frac{\sigma_{\tau}}{\tau} > 10\%$ • more stars in the bottom of the ms

Greater than 8 kpc

- 70 % of stars have $\frac{\sigma_{\tau}}{-}$ > 10%
- observational errors become large

• With the complementary spectroscopic observation $\sigma_{_{\mathrm{[Fe/H]}}}=0.1$

Conclusion

- At less than 200 pc, Jupiter mass planets : Characterization of the exoplanets
- At less than 500 pc, open clusters
- Disk and the globular clusters :
 - Dating the Galaxy structure : Formation and evolution
 - Age-metallicity relation and stellar formation history
- Need a good accuracy on the metallicity

Distance	$\frac{\sigma_{\tau}}{\tau} > 10\%, \sigma_{\text{[Fe/H]}} = 0.1$	$\frac{\sigma_{\tau}}{\tau} > 10\%, \sigma_{\rm [Fe/H]} = 0.3$
46 pc	44	75
100 pc	38	70
135 pc	37	69
750 pc	37	71
1 kpc	38	72
2.2 kpc	27	58
4.1 kpc	34	58
6kpc	43	63
8kpc	49	68
10 kpc	59	69