The AMBRE Project

Metallicity Distribution with the FEROS archived spectra

C. Clare Worley

P. de Laverny, A. Recio-Blanco, V. Hill, G. Kordopatis, A. Bijaoui Observatoire de la Côte d'Azur

SF2A, Nice, 6th June 2012

> The AMBRE Project

>AMBRE:FEROS Stellar Parameters

Data-mining Catalogues

Metallicity Distribution with FEROS

GSP-spec.

AMBRE:FEROS

Resolving Power Spectral Domain

including the wavelength domain and resolutions of Gaia RVS.

SF2A

FEROS 48.000 HARPS 115,000 **UVES** 40,000 to 110,000 Flames/GIRAFFE 5,600 to 46,000

The AMBRE Project

Observatoire

ESO Spectrograph

ESO/OCA project: 2009 - 2012

350nm - 920nm 378nm - 691nm 300nm - 1100nm 370nm - 900nm

AMBREFEROS

Total Sample

125.000 100,000

20,000

Approximate No. archived spectra

>1000,000

>350,000

This extensive dataset covers a large range of wavelengths and resolutions,

MATISSE: MATrix Inversion for Spectral SynthEsis

Recio-Blanco, Bijaoui, de Laverny (2006), Bijaoui, Recio-Blanco, de Laverny (2008)

Local multi-linear regression method

Stellar parameters ($\theta = T_{eff}$, log g, [M/H], individual chemical abundances) are derived by the projection of an input observed spectrum O(λ) on a vector function B₀(λ).

$$\hat{ heta}_i = \sum_{\lambda} B_{ heta}(\lambda) O_i(\lambda)$$

The B₀(λ) function is an optimal linear combination of theoretical spectra S(λ) calculated from a synthetic spectra grid (the <u>learning phase</u>).

$$\boldsymbol{B}_{\theta}(\lambda) = \sum_{i} \alpha_{i} S_{i}(\lambda)$$

The $\mathbf{B}_{\mathbf{0}}(\lambda)$ function reflects the sensitivity of the spectral region to $\boldsymbol{\theta}$.

The Grid of High Resolution Synthetic Spectra de Laverny, Recio-Blanco, Worley & Plez 2012, A&A, in press

Computed using OCA Mesocentre ~ 50,000hrs computing time

- ~16000 synthetic spectra
- Optical domain: 3000 Å 12000 Å
- MARCS model atmospheres (Gustafsson et al., 2010)
 - $\blacktriangleright T_{\rm eff} : 2500 \rightarrow 8000 \, \rm K$
 - $\blacktriangleright \log g : 0.0 \rightarrow +5.0 \, \mathrm{dex}$
 - $\blacktriangleright [M/H] : -5.0 \rightarrow +1.0 \text{ dex}$
 - $\blacktriangleright [\alpha/Fe]: -0.4 \rightarrow +0.8 \text{ dex}$
- Molecular line lists from Bertrand Plez
- Atomic line lists : VALD

The AMBRE:FEROS Stellar Parameters Worley, de Laverny, Recio-Blanco, Hill, Bijaoui

& Ordenovic, 2012, A&A, in press

FEROS:MPG/ESO 2.2m Telescope, La SillaInstrument Resolution ~ 48,000Wavelengths \rightarrow 350nm to 920nmOctober 2005 \rightarrow December 2009No. Archived Spectra \rightarrow 21551No. Stars \rightarrow ~ 6285

Majority of Southern Sky is sampled

MATISSE SET-UP: 17 Wavelength Regions \rightarrow 1500 Å from 4000 Å to 7000 Å \rightarrow Mg triplet (~5160 Å), H_β (4861 Å)

Validation: Homogeneous Reference Samples

Standard Star Atlases: Sun, Arcturus, Procyon Spectral Libraries: S⁴N, PASTEL

Key Studies: Crifo et al. $2010 \rightarrow$ Gaia RVS Standards

Bensby et al. $2003 \rightarrow$ alpha element abundances

6th June 2012

SF2A AMBRE:FEROS

FEROS Spectra: The Parameters 6508 spectra → ~3087 stars → 30.2 % of archived sample

FEROS Stars: Distances

- Apparent Magnitudes: V, B, J, K (PPMXL)
- Distances
 - **1** Hipparcos new reduction (van Leeuwen 2007)
 - **2** Absolute Magnitudes using Isochrones: M_V, M_B, M_I, M_K

Kordopatis et al, 2011a&b

& Interstellar reddening from Theoretical Colours

Gazzano et al. 2010, 2012; Gonzalez et al, 2009

Distance from Sun & above Galactic Plane $D = 10^{0.2(m-M+5)}$ $Z_{cc} = Z_{c} + Dsinb$

FEROS Stars: PPMXL

V,B,J,K, Proper Motions: 5135 spectra → ~2248 Stars

FEROS Stars: Hipparcos V, Parallax, Proper Motions 2531 spectra $\rightarrow \sim 1141$ Stars FEROS Giants: 62 FEROS Dwarfs: 1079 No. Stars No. Stars Û V (Hipparcos) V (Hipparcos)

FEROS Stars: Metallicity Distribution

FEROS Stars: Where are they?

Metallicity Gradients?PPMXL Sample: $\triangle R_{GC}, \triangle Z_{GC} \approx 1.5 \text{ kpc}$ Not a good sample for gradientsHipparcos Sample: $\triangle R_{GC}, \triangle Z_{GC} \approx 0.5 \text{ kpc}$

Population Characterisation of Local Solar Neighbourhood

Toomre Diagram of Hipparcos Sample → Total kinetic energy of stars vs their rotational energy.

Thin Disk: $< \sim 50 \text{kms}^{-1}$ Thick Disk: $\sim 50 \text{kms}^{-1} -$ Halo: $> \sim 150 \text{kms}$

 $\sim 50 \text{kms}^{-1} \rightarrow \sim 150 \text{kms}^{-1}$ $> \sim 150 \text{kms}^{-1}$

(Bensby 2009)

Conclusions & Future Work

- AMBRE: FEROS analysis complete, UVES & HARPS underway
- Supplemental photometric & kinematic information obtain for FEROS stars from PPMXL & Hipparcos
 - Final FEROS sample provides an interesting dataset of local solar neighbourhood giants (1696) and dwarfs (552)
 - Not useful for gradients
 - Useful for Population Characterisation (thin & thick disk)
 - AMBRE:FEROS α-elements
 - Space motions (U,V,W)
 - Individual chemical abundances

