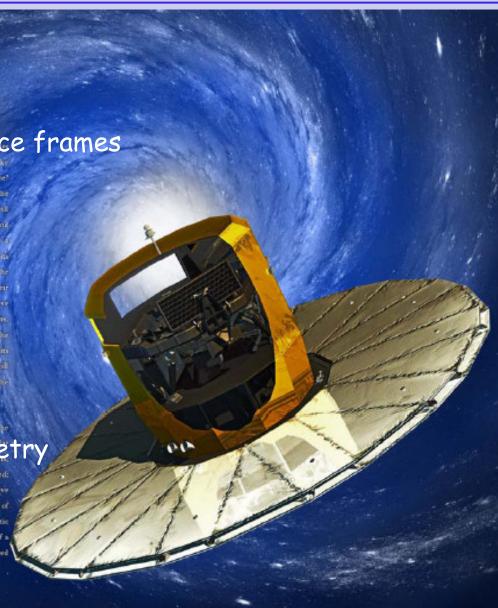
Astrometry : 1980-2020 From Hipparcos to Gaia

F. Mignard


Observatory of the Côte d'Azur, Nice.

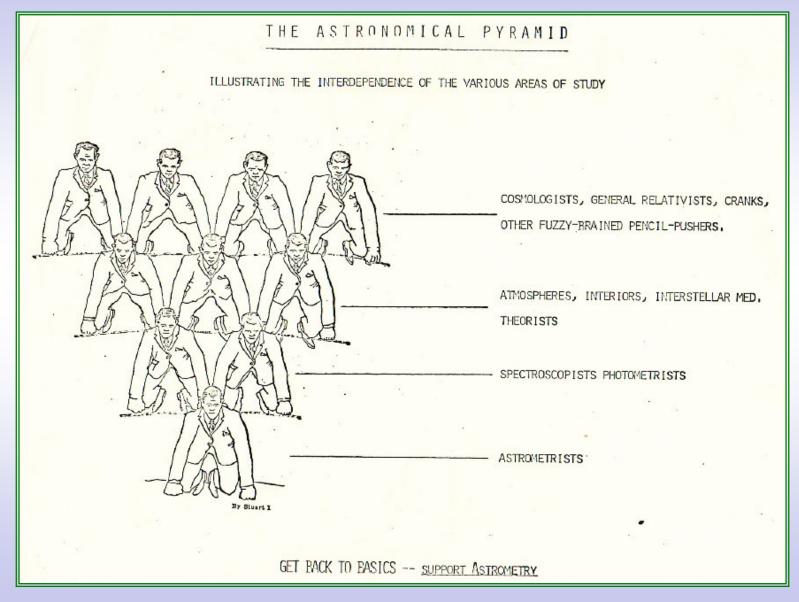
SF2A, AS Gaia, July 2008

Outline

- Astrometry
- Fundamental catalogues and reference frames
- Absolute parallaxes
- Hipparcos and its legacy
- Gaia in brief
- Summary : the golden age of astrometry

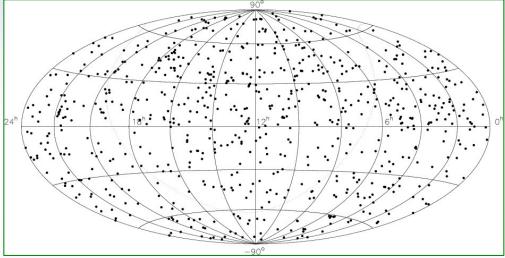
What is astrometry?

- Astrometry deals with the measurement of the positions, distances and motions of astronomical objects on the celestial sphere.
 - Global or wide field astrometry → reference frame
 - Local or small field astrometry → parallaxes, binaries
- Astrometry relies on specialized instrumentation and observational and analysis techniques.
- It is fundamental to all other fields of astronomy.


Astrometry 1975

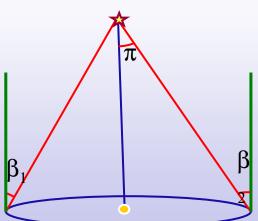
- Reference system based on the FK4
 - dynamical system
 - 1500 stars, accuracy of 0."1
 - based on principles more than 200 years old
- Parallaxes with small field astrometry
 - ~ 10000 stars with accuracy 0"01
 - extensive photographic program
- The Carte du Ciel officially terminated in 1970 (started in 1887)
- Start of CCD observations
- Solar system distances with radar
- Satellite and lunar laser ranging still in infancy

Astrometry: a pre-Hipparcos diagram



Circulated ca. 1974 by R. Probst, UVa 5

The astrometric revolution

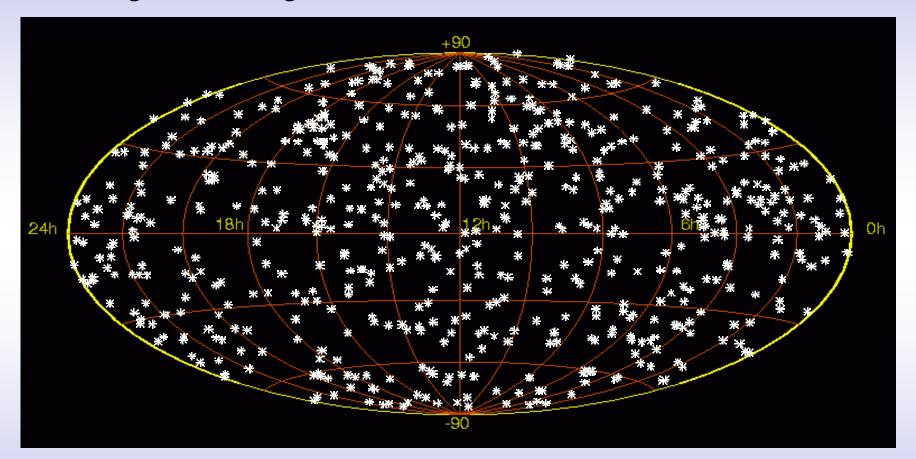


Two good reasons to do astrometry in space

Reference frame

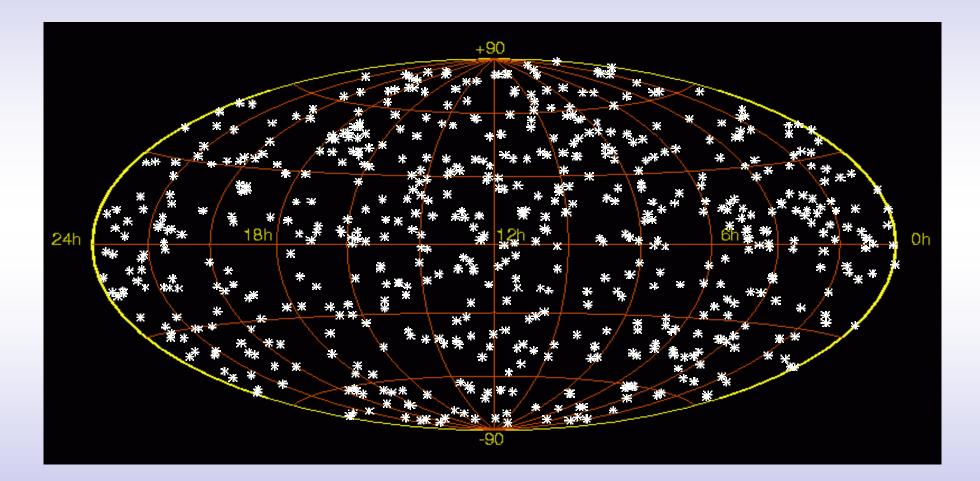
Reference frames

SF2A, AS Gaia, July 2008



- Astronomical catalogues vs. Fundamental catalogues
 - Large full sky astronomical catalogues widely available in 1970
 - BD (1860) & Cordoba (1890) with 700,000 stars
 - HD (Henry Draper) since 1920 with 230,000 entries
 - SAO (1966) with 270,000 stars with positions and PM
 - Positions and PM based on an existing reference frame

Reference frame : standard view


Pre-existing reference graticule

Reference frame : fundamental view

Stellar sources as fiducial points

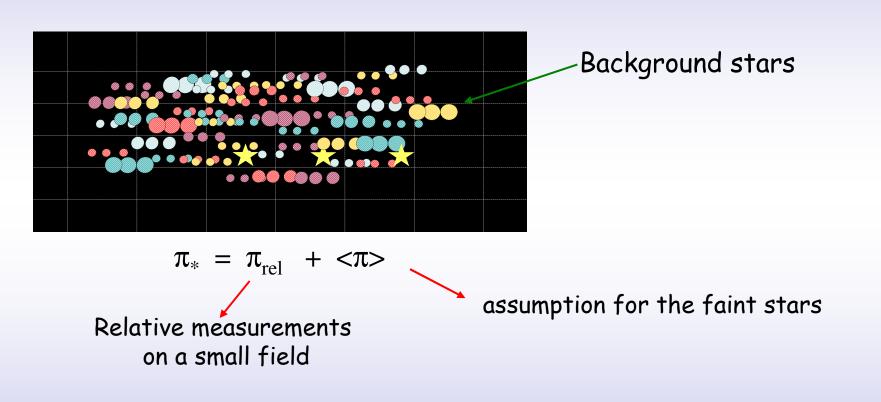
Fundamental Catalogues

- Absolute observations with no reference to previous determinations
- Historically tied to the equator and equinox at a particular epoch
 - assumed to provide absolute and inertial orientation
 - observations of the Sun or planets mandatory
- Small catalogues, many years of tedious labour to get absolute positions

• 1790	Maskelyne	36	zodiacal stars, one epoch
1818	Bradley/Bessel	3000	no PM, nearly fundamental for one epoch
• 1830	Bessel	36	with PM, + precession
1878	FK1	539	
1898	Newcomb	1297	Start of the GC series
1907	FK2	925	
• 1937	FK3	873	1st IAU supported international RF
• 1963	FK4	1535	σ ₁₉₅₀ ~ 0"07- 0"15, σ ₂₀₀₀ ~ 0".15-0"30
1988	FK5	1535	σ ₂₀₀₀ ~ 0".05 - 0"10
• 1997	Hipparcos	100,000	(quasi fundamental)
1998	ICRF SF2A, AS Gaia, July 2008	212	11

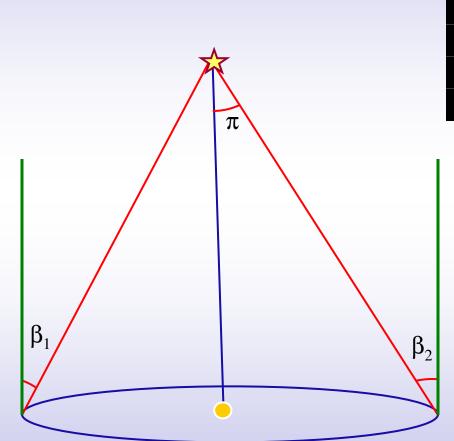
Limitation of the classical approach

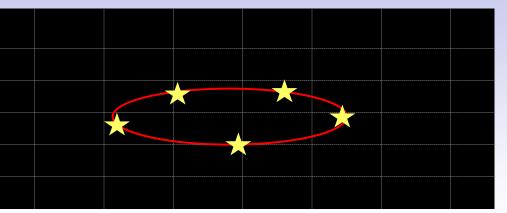
- 1. System based on stars
 - problems with proper motions, multiplicity ٠
 - Solution: distant sources -> already considered by W. Herschel & Laplace
 - Adopted in ~ 1990 with ICRS and ICRF in 1998
- 2. System defined with equator and equinox
 - precession and nutation modelling •
 - solution: fixed frame not linked to solar system -> ICRS
- 3. Observations from the ground
 - many stations needed to cover the sky •
 - disturbances from the atmosphere •
 - solution: go to space -> Hipparcos


Parallaxes

SF2A, AS Gaia, July 2008

Relative parallaxes


Insight of the technique in the Dialogo of Galileo (Galileo, Dialogue 3rd day)



- systematic errors as a result of a wrong $<\!\!\pi\!\!>$
- not usable for distances > 100 pc

Absolute parallaxes

$$\pi = \frac{\beta_1 + \beta_2}{2}$$

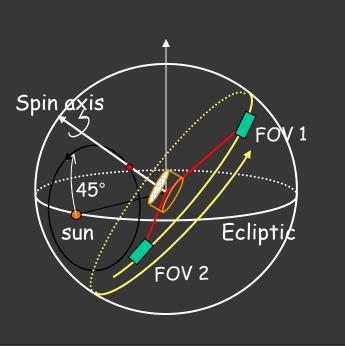
<u>Methods applied</u> :

- measurements of declinations
- zenith distances
- virtually impossible from the Earth

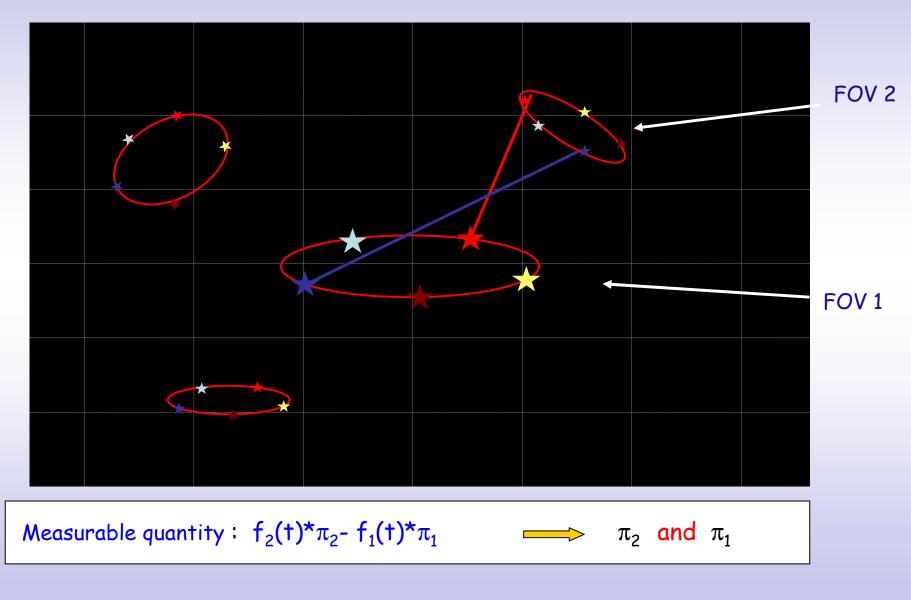
Small field astrometry

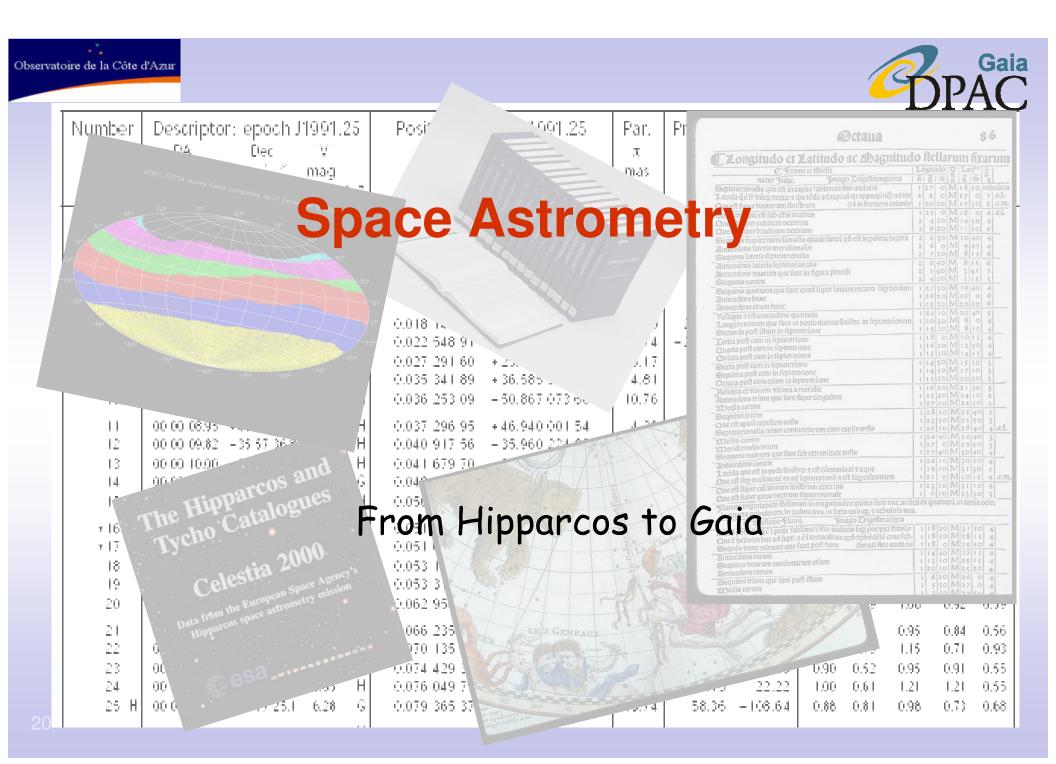
Evolution 1850 - 1980

- 1840
 3 published parallaxes
- 1880 17 "
- 1900 50 "
- 1910 100 "
- 1930 2000 "
- 1965 7000 "
- 1980 10000 "
 - Estimated error : 0".016
 - ==> $\sigma(\pi) / \pi$ = 50% at 30 pc !
 - Mean value of the parallaxes : 0".018


Most of these parallaxes have no individual meaning

A route to absolute parallaxes : Two fields of view


P.Lacroute 1906-1993


- Overall principles set forth by P. Lacroute in 1967.
- Optical combination of two viewing directions
- The two FOVs are mapped onto a common focal plane
- Stars are combined by pairs
- Wide angle measurements are carried out

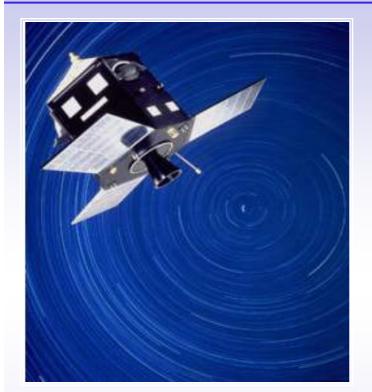
How parallaxes get absolute

SF2A, AS Gaia, July 2008

Space astrometry

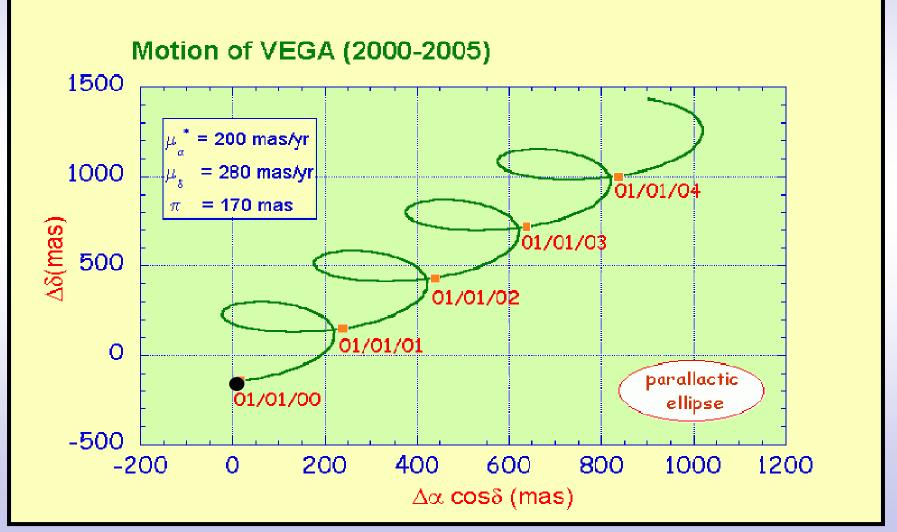
- Astrometry is the main reason to go to space ...
 - global, accurate, absolute
 - not achievable from the ground

- but astrophysics is the main reason to pay for it
 - benefits almost everywhere
 - secure its foundations


Space astrometry : two complementary concepts

- Survey of a large number of stars
 - Continuous scanning of the sky
 - Input catalogue or on-board detection
 - Complete up to a limiting magnitude or selection of stars
 - The scanning law determines the integration time
 - Frozen observing program
- Pointing at individual sources
 - Pre-selected sources
 - Variable and adapted integration time
 - Longer operation dead time
 - Flexible program, can react to external demand

Main Features of Hipparcos



- ESA mission launched in August 1989
- Continuous sky scanning over 3.5 years
- Results published in 1996-7
- One single telescope àf 29 cm in diameter
- Two fields of view separated by 58°
- Detection with a photoelectric tube (r = 0.003)
- One source observed at a time

Basic astrometric model

- Absolute motion of Vega
 - non rotating reference frame

Gaia

Main features

- Simultaneous observations in two widely separated directions
 - angular distance between pair of stars
 - angular scale determined by the angle of a complex mirror
 - self calibrating instrument
- Regular scanning of the sky over 3 years
 - scanning instrument with no pointing
 - every direction sampled about 110 times during the mission
- Observation of selected sources : no on-board detection
 - fixed observing program

Main Results of Hipparcos

- An astrometric catalogue of 118 000 stars
 - Hipparcos is a quasi-fundamental catalogue
 - $\sigma(\alpha) \sim \sigma(\delta) \sim \sigma(\pi)$ ~ 1 mas at V = 9 at 1991.25
 - $\sigma(\mu_{\alpha}) \sim \sigma(\mu_{\delta}) \sim 1$ mas/yr at V = 9
- Complete to V = 7.3 9.2 (depending on galactic latitude)
- Limiting magnitude 12.4
- Distances better than 10% for 21 000 stars , D < 200 pc
- Density : 3.0 */ deg²
- Linked to the ICRF with radio stars to within 0.6 mas and 0.25 mas/yr

Additional products

- A survey of binary stars
 - solution for 13000 systems
 - discovery of about 3000 new systems
 - astrometric detection of nearly 2000 pairs
 - masses for about 50 systems
- A photometric catalogue with 130 observations per star
 - $\sigma(H) \sim 0.001 \text{ mag}$
 - 13 x 10⁶ epoch observations
 - survey of variability for many types of stars to the 10⁻³ mag level
 - 2500 periodic variables with periods and folded light-curves

Impact of Hipparcos : Publications

Number of published papers using Hipparcos data

year	all	refereed
1996	57	24
1997	422	92
1998	411	220
1999	429	208
2000	427	195
2001	282	143
2002	260	143
2003	254	127
2004	190	96
2005	193	101
2006	205	110
2007	162	86

Impact of Hipparcos : Access

Access to the Catalogues at the CDS

% of retrieval

1997 to	→ 2000	→ 2005	
 Hipparcos 	10%	2MASS	10%
 Tycho-2 	5%	UNSO-B1	4.5%
• USNO A2	3%	Hipparcos	3.5%
 IRAS 	1.5%	Tycho-2	3%
		GCS2	2.3%

- W. Fricke (Fundamental Catalogues: Past, Present & Future, 1985)
 - "one would wish that the Hipparcos mission should not be unique one but be repeated after a period of 10 to 20 years".
- Hipparcos positions degrade quickly (1 mas/yr)
- With no technological improvement, two absolute catalogues
 - $\sigma \sim 1 \text{ mas}$:
 - ∆t ~ 20 yrs
 - → PM to 50 muas/yr

Astrometry for Astrophysics

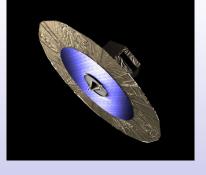
- Direct Products
 - Accurate positions, absolute parallaxes, proper motions for many stars
 - 1 mas (Hipparcos) to 1 µas (SIM)
 - Millimag and multi-epochs photometry in several bands
 - 50 to 400 observations
 - Radial velocity to few km/s (GAIA)
 - Spectrophotometry in the near IR or UV
 - Solar system objects (Hipparcos, DIVA, GAIA)
 - Detection and measurement of visual and astrometric binaries
- Final goals:

Stellar and Galactic physics → support of a wide community

Gaia : The context

• A forerunner : HIPPARCOS (ESA)

accuracy 1 mas ~ 5 c at 1000 km


• The unfortunate followers :

ROEMER, FAME_1, FAME_2, DIVA, LOMONOSSOV, AMEX ESA US US DE RU US

Accuracy 0.1 mas ~ 1 nail at 1000 km

- Still under study : JASMINE (JAP), J-MAPS
- Delayed but still alive : SIM (US)
- Fully funded mission: GAIA (ESA)
 - Accuracy 25 µas ~1 hairwidth at 1000 km

10⁹ stars.

25 µas @ V = 15 mag

ESA mission Launch: end 2011 Mission : 5 yrs

Photometry (~ 25 bands)

Radial velocity

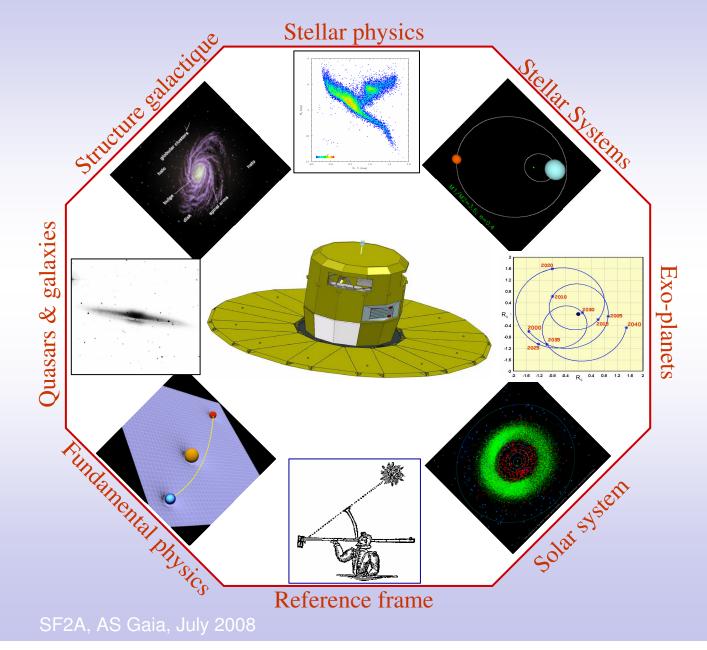
Low resolution spectroscopy

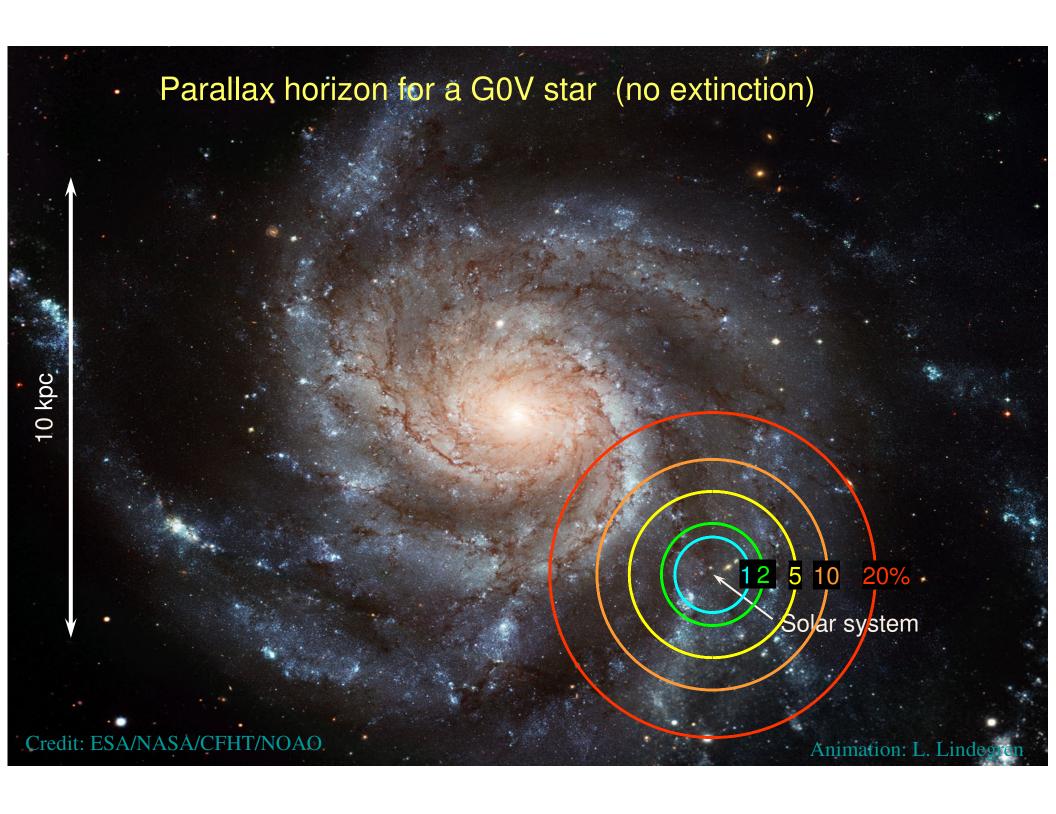
Observation principles

- GAIA is a scanning mission
 - no pointing, no change in the schedule
- GAIA gathers astrometric, photometric and spectroscopic data
 - each source is observed ~ 80 times in astrometry, 50 in spectroscopy
- GAIA has an internal system of detection
 - sensitivity limited detection at $G \sim R = 20$
- Objects are more or less regularly measured during the mission
 - orbit reconstruction
 - light curves

Assets of Gaia

- A single mission with three instruments
 - Astrometric, photometric and spectroscopic data
- Uniform coverage of the sky
- Quasi regular time sampling over 5 years
 - ~ 100 observations > photometry, orbits of binaries, asteroids
- Survey mission sensitivity limited
- Internal and autonomous detection system
- Global astrometry of staggering precision
 - Internal metrology, thermal and mechanical stability
- Experienced and motivated community in Europe after Hipparcos
 - scientific and industrial


Few major past steps



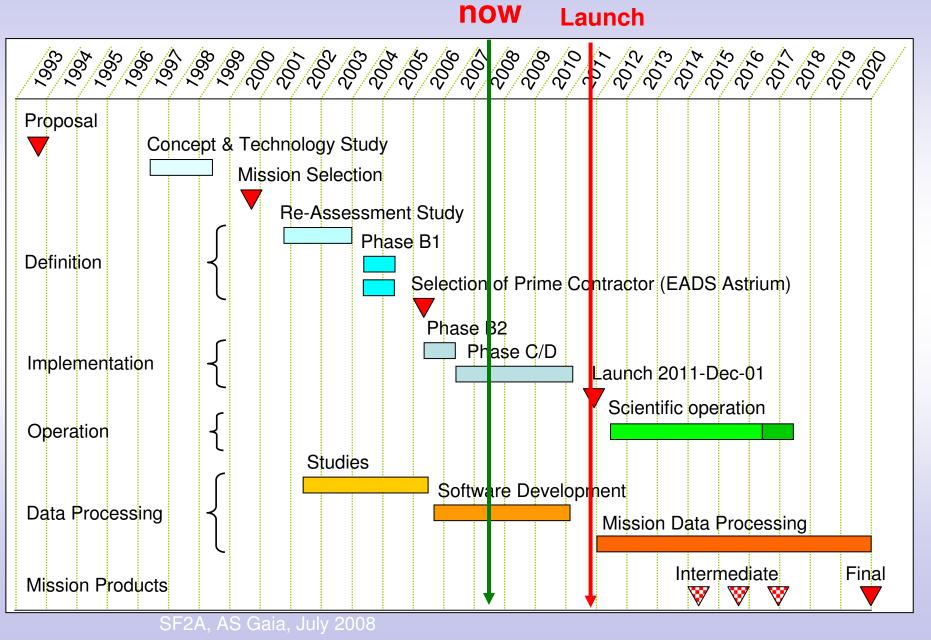
- 1994 ESA is advised for its future programs to have an astrometry mission to 10µas
- 1996/2000 Pre-studies and science case
- 07/2000 Concept and Technology Study Report
- 10/2000 ESA selected Gaia as Corner Stone # 6,
 - Ariane V, $\rightarrow \sigma = 10 \mu as$
- 01-05/02 Descoped and lighter version reselected (SPC)
 - Soyuz, $\rightarrow \sigma = 15 \mu as$ (then 24 μas in 2004)
- 07/2005 Publication of the MRD (Mission Requirement Document)
- 07/2005 ITT (Invitation to tender) to industry released
- 02/2006 Astrium selected as prime contactor to build Gaia → Phase B
- 06/2006 Formation of the DPAC (Data Processing and Analysis Consortium)
- 11/2006 AO (Announcement of opportunity) to scientific community released
- 05/2007 Selection of the DPAC by ESA

What science with Gaia?

Cepheids with Gaia

- 15 d < 0.5 kpc, 65 d< 1 kpc, 165 d < 2 kpc
 - bright enough (V < 13) and red
- In the plot : 400 galactic cepheids from David Dunlap DB
 - ◆ distance and magnitude → one can use the Gaia predicted accuracy

Sky-averaged standard errors for GOV stars (single stars, no extinction)

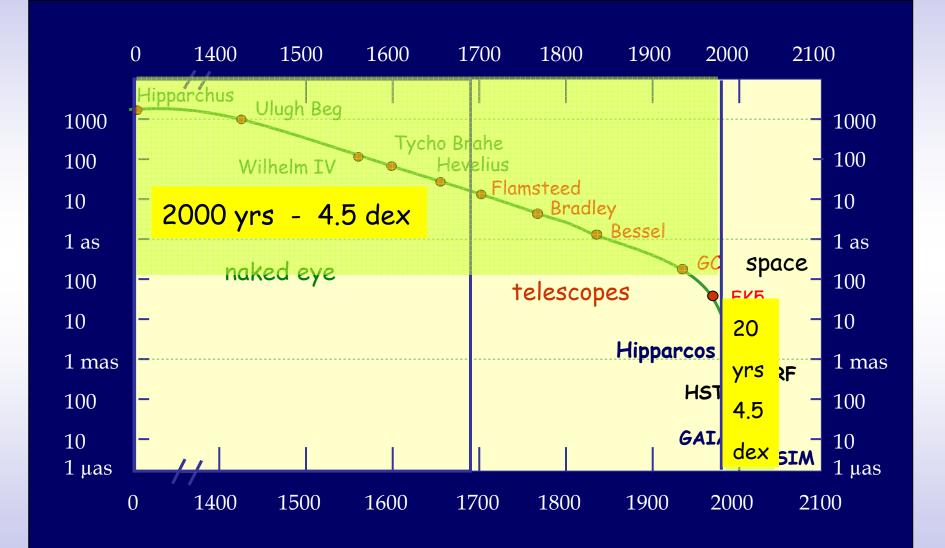

V magnitude	6 - 13	14	15	16	17	18	19	20	mag
Parallax	8	13	21	34	55	90	155	275	μας
Proper motion	5	7	11	18	30	50	80	145	µas/an
Position @2015	6	10	16	25	40	70	115	205	μας

Notes:

- Estimates calculated with the Gaia Accuracy Tool (courtesy J. de Bruijne, ESA)
- Radiation-damage effects on CCDs not fully taken into account
- Estimates include a 20% margin (factor 1.2) for unmodelled errors

Gaia – Project status and schedule

Therefore, if everything goes as planned...


in 2018...

- 10⁹ stars
 - ◆ 10⁶ V = 12, 30 × 10⁶ V = 15, 250 × 10⁶ v = 18
 - $\sigma \sim 4 \mu as V < 12$, 10 $\mu as V = 15$, 150 $\mu as V = 20$
- 25000 \Rightarrow / deg² ; max : 3 x 10⁶ / deg² .
- 200 x 10⁶ radial velocities
- Stellar classification for all classes and types
- Variability analysis over ~ 10⁸ stars
- 10 000 stellar masses $\sigma < 1 \%$
- Extra solar planets to 200 pc
- 3×10^5 minor bodies of the solar system, 100 masses
- ~ 5×10^5 QSOs + z + photometry, ICRF in the visible
- γ to ~ 10 -7 SF2A, AS Gaia, July 2008

My main point: The Golden Age of astrometry

SF2A, AS Gaia, July 2008

GAIA or Gaia ?

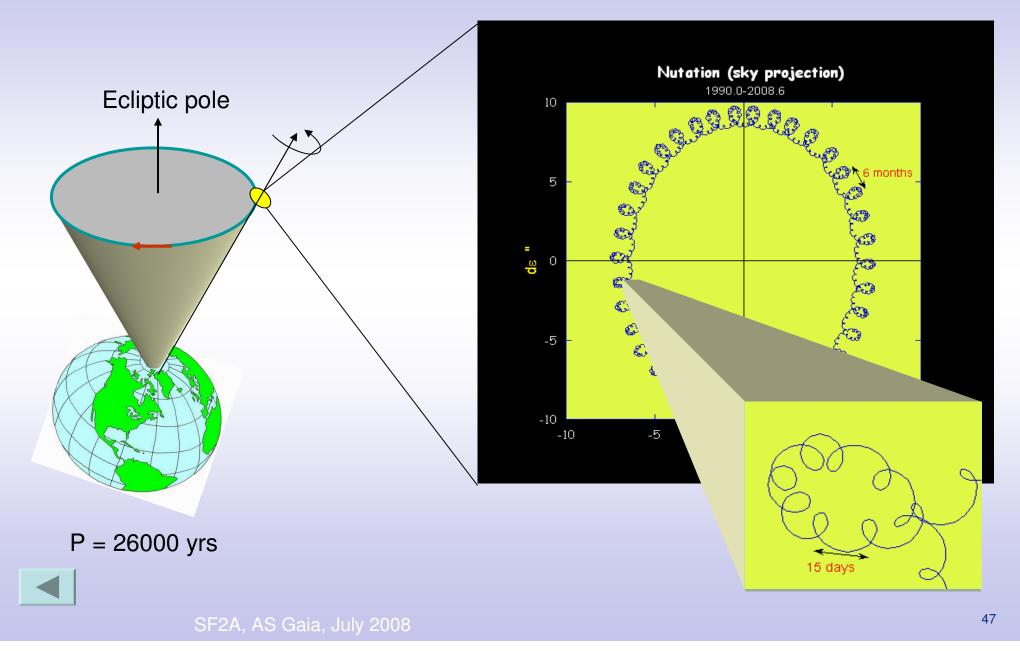
or

Gaia is the Greek Goddess of the Earth!!

Originally in ESA this was :

GAIA: Global Astrometric Inteferometer

Now this is simply Gaia : a proper name, not an acronym



Merci de votre attention

Mirage de la Corse vue de Nice

Precession Nutation

