Astrometry of TNOs to characterize astrometric binaries in the solar system

A. Thirouin1 J.L. Ortiz1 D. Hestroffer2 N. Morales1 S. Cikota3 A. Cikota3 R. Duffard1

1Instituto de Astrofísica de Andalucía (IAA, CSIC), Spain
2IMCCE/Observatoire de Paris, France
3Physik-Institut, Universität Zurich, Winterthurerstrasse, Zurich, Switzerland

Astrometry of TNOs to characterize astrometric binaries in the solar system

1. Binary and multiple systems in the Kuiper Belt
 - Short introduction

2. Orcus and Vanth
 - Presentation

3. Observations
 - Observational run

4. Photometry and Astrometry
 - Photometric study
 - Astrometric study

5. Conclusion
 - Conclusion and future work
Binaries in the Kuiper Belt

- In the Kuiper Belt ...
 - \(\sim 1400 \) Transneptunian Objects discovered
 - \(\sim 5\% \) are binary or multiple systems
 - Probably much more binary systems
Binaries in the Kuiper Belt

• In the Kuiper Belt ...
 - \(\sim 1400 \) Transneptunian Objects discovered
 - \(\sim 5\% \) are binary or multiple systems
 - Probably much more binary systems

• Why are binary systems important?
 - Satellite orbit \(\Rightarrow \) Mass of the system \(\Rightarrow \) Density \(\Rightarrow \) Size of the components
 - Mutual events \(\Rightarrow \) orbital period, rotational period, diameter ratio
- **Binary detection and study**
 - **Big telescopes and adaptive optic**: first binary TNO, 1998 WW₃₁ discovered with the CFHT ⇒ Primary/satellite separation.
 - Majority of binary found with the Hubble Space Telescope ⇒ highly demanded.
 - Is it possible to detect/study binary systems with small/medium telescopes?

![Image of binary systems](image_url)
We want to detect ...

- the satellite’s rotation in our photometric study
- the photocenter motion of the combined primary+satellite around the barycenter along an orbital revolution of the satellite.
Orcus and Vanth

(90482) Orcus (formerly 2004 DW)
- Discovered on February 17, 2004.
- Plutino, locked in a 3:2 resonance with Neptune.
- Rotational period: 10.47 h (Thirouin et al., 2010); 10.08 h (Ortiz et al., 2006)

Vanth
- Satellite discovered using HST observations from November 13, 2005.
- Orbit: nearly face-on circular orbit with an eccentricity < 0.0036. (Brown et al., 2010)
- Distance: (8980±20) km (Brown et al., 2010)
- Orbital period: (9.5393±0.0001) days (Brown et al., 2010)
- Magnitude difference: 2.5 (Brown et al., 2010)

System
- Mass: (6.32±0.01)×10^{20} kg (Brown et al., 2010)
- Density: (1.5±0.3) g cm^{-3} (Brown et al., 2010)
- Effective diameter: 850±90 km (Lim et al., 2010); 940±70 km (Brown et al., 2010) ⇒ D_P≈800 km and D_S≈260 km (Carry et al., 2011)
Orcus and Vanth

Presentation

Observations

Observational run

Photometry and Astrometry

Photometric study

Astrometric study

Conclusion

Conclusion and future work

Astrometry of TNOs to characterize astrometric binaries in the solar system

Binary and multiple systems in the Kuiper Belt

Short introduction

Observatory, Telescope and Instrument

Observatory

- Complejo Astronomico el Leoncito, CASLEO, in Argentina.

Telescope

- 45 cm f/2.8.
- Remotely controlled

CCD Camera

- 4008 × 2672 pixels
- Pixel scale: 1.47 arcsec/pixel
- Total FOV: 98 × 65 arcmin

OBSERVATORY, TELESCOPE AND INSTRUMENT

OBSERVATORY

- Complejo Astronomico el Leoncito, CASLEO, in Argentina.

TELESCOPE

- 45 cm f/2.8.
- Remotely controlled

CCD CAMERAS

- 4008 × 2672 pixels
- Pixel scale: 1.47 arcsec/pixel
- Total FOV: 98 × 65 arcmin
Observations

Part of the field of view
Negative image of the central 24.5×24.5 arcmin field that was traversed by Orcus.

Images
- 10 images × 18 nights of observations spanning a period of 33 days.
- Highest elevation
- Unresolved images of Orcus/Vanth.
- Exposure time: 300 s
- Broad-band filter
- Same field of view during all the campaign.
Photometric study

- Photometric study
 - Relative photometry
 - Data reduction as described in *Thirouin et al., 2010*
 - 20 reference stars
 - around 20% of the images were rejected
 - Several peaks with a high confidence level
 - Highest peak located at 0.1029 cycles/day
 \[\Rightarrow 9.7 \pm 0.3 \text{ days}. \]

Published lightcurves:
- Rotational period: 10.47 h (Thirouin et al., 2010); 10.08 h (Ortiz et al., 2006)

Lomb periodogram of Orcus’ relative photometry (Ortiz et al., 2011)
Photometric study

- Photometric study
 - Relative photometry
 - Data reduction as described in Thirouin et al., 2010
 - 20 reference stars
 - around 20% of the images were rejected
 - Several peaks with a high confidence level
 - Highest peak located at 0.1029 cycles/day
 \[9.7 \pm 0.3 \text{ days}. \]

- Published lightcurves
 - Rotational period: 10.47 h (Thirouin et al., 2010);
 10.08 h (Ortiz et al., 2006)
Photometric study

- Photometric study
 - Relative photometry
 - Data reduction as described in Thirouin et al., 2010
 - 20 reference stars
 - around 20% of the images were rejected
 - Several peaks with a high confidence level
 - Highest peak located at 0.1029 cycles/day ⇒ 9.7 ± 0.3 days.

- Published lightcurves
 - Rotational period: 10.47 h (Thirouin et al., 2010);
 10.08 h (Ortiz et al., 2006)
Photometric study

- Photometric study
 - Relative photometry
 - Data reduction as described in Thirouin et al., 2010
 - 20 reference stars
 - around 20% of the images were rejected
 - Several peaks with a high confidence level
 - Highest peak located at 0.1029 cycles/day ➞ 9.7 ± 0.3 days.

- Published lightcurves
 - Rotational period: 10.47 h (Thirouin et al., 2010);
 10.08 h (Ortiz et al., 2006)

Lightcurve of Orcus (Thirouin et al., 2010)
Rotational period

- 10.47 h in *Thirouin et al., 2010*
- 10.08 h in *Ortiz et al., 2006*
- 9.7 ± 0.3 days ⇒ not a rotational period
Rotational period
- 10.47 h in Thirouin et al., 2010
- 10.08 h in Ortiz et al., 2006
- 9.7 ± 0.3 days ⇒ not a rotational period

New value?
- 9.5393 ± 0.0001 days: orbital period (Brown et al., 2010)
- Similar values
- Orbital period? ⇒ maybe ...
Astrometric study

- Astrometric study in RA, photocenter motion
 - Relative astrometry
 - Third-order polynomial fit
 - \(\sim 500 \) UCAC2 reference stars
 - Source positions derived using SExtractor (3pix)
 - Right ascension (RA) residuals computed from an orbital fit to the astrometry

![Right ascension residuals](image-url)
Astrometric study

• Astrometric study in RA, photocenter motion
 ■ Relative astrometry
 ■ Third-order polynomial fit
 ■ \(\sim 500 \) UCAC2 reference stars
 ■ Source positions derived using SExtractor (3pix)
 ■ Right ascension (RA) residuals computed from an orbital fit to the astrometry

• Lomb Periodogram
 ■ Highest peak located at 0.1029 cycles/day
 \[9.7 \pm 0.3 \text{ days} \]
- **Periodicity**
 - 9.7 ± 0.3 days in the RA residuals
 - 9.7 ± 0.3 days in the photometric study
Periodicity

- 9.7 ± 0.3 days in the RA residuals
- 9.7 ± 0.3 days in the photometric study

So?

- Orbital period? \Rightarrow one more test
Astrometry of TNOs to characterize astrometric binaries in the solar system

Binary and multiple systems in the Kuiper Belt

Short introduction

Orcus and Vanth

Presentation

Observations

Observational run

Photometry and Astrometry

Photometric study

Astrometric study

Conclusion

Conclusion and future work

Vanth orbit

- Face-on circular orbit
- Low eccentricity
- Orbital Period: 9.5393 ± 0.0001 days

Orbit of Vanth (Brown et al., 2010)
Astrometric study

- **Vanth orbit**
 - Face-on circular orbit
 - Low eccentricity
 - Orbital Period = 9.5393 ± 0.0001 days

- Are the residuals correlated with theoretical Vanth position?
 - Average of the residuals each night \Rightarrow 18 points.
 - Theoretical positions computed with the orbital information (Brown et al., 2010).
 - **Spearman test**: clear correlation with a significance level of 97%

Linear fit to the residuals Vs. E-W Vanth-Orcus distance (Ortiz et al., 2011)
Astrometric study

- Astrometric study in Declination
 - Relative astrometry
 - Third-order polynomial fit
 - \(~ 500\) UCAC2 reference stars
 - Declination residuals computed from an orbital fit to the astrometry

![Graph showing astrometric study results](image)
Astrometric study

- Astrometric study in Declination
 - Relative astrometry
 - Third-order polynomial fit
 - ~ 500 UCAC2 reference stars
 - Declination residuals computed from an orbital fit to the astrometry

- Lomb Periodogram
 - Lack of detection in Declination residuals \Rightarrow a smaller inclination of the orbital plane than the perpendicular to the line of sight.
We found an **unambiguous periodic signal** in the relative astrometry due to the satellite, **despite the high magnitude difference between Orcus and Vanth**.
We found an unambiguous periodic signal in the relative astrometry due to the satellite, despite the high magnitude difference between Orcus and Vanth.

Periodicity in the residuals are coincident with the orbital period and the residuals are correlated with the theoretical positions of Vanth.
We found an unambiguous periodic signal in the relative astrometry due to the satellite, despite the high magnitude difference between Orcus and Vanth.

Periodicity in the residuals are coincident with the orbital period and the residuals are correlated with the theoretical positions of Vanth.

Detecting binary systems by means of high-precision astrometry with small to large telescopes is feasible provided that the barycenter and the photocenter of the system are separated by at least tens of mas.
Another option is to perform **absolute astrometry**, but, we need very good astrometric catalogs with faint stars. The GAIA mission will provide this kind of catalog.

We want to try this technique:
- known binary systems with a not well determined orbital period
- TNO with no known satellite
- with bigger telescopes