News on Seeking Gaia’s Astrometric Core Solution with AGIS

Uwe Lammers

Gaia Science Operations Centre
ESA/ESAC/SRE-ODO
Outline

0. AGIS : The name of the game
1. CG : Efficient pathfinder in 5000 Mio dimensions
2. GC : Calibration the easy way …
3. Amazon: AGIS in the Clouds
AGIS: The name of the game

• Astrometric Global Iterative Solution
 – DPAC’s method of choice for constructing the astrometric part of the catalogue from all available relevant measurements (10^{12} for determining $5 \cdot 10^9$ unknowns)

• WP 320 – main players:
 – Lund Observatory, Lund (Lindegren + Hobbs + Holl)
 – ARI, Heidelberg (Bastian)
 – Lohrman Observatory, Dresden (Klioner + Butkevich)
 – ESAC (Lammers + team)

• Distributed, multi-threaded, all-in Java system using DPAC common resources + infrastructure
 – GaiaTools
 – Development tools: svn, Mantis, ant, ivy, …
What is AGIS solving?

\[\chi^2(x) = \sum_l \frac{R_l(x)^2}{\sigma_l^2 + G_l^2} \prod \left(\frac{R_l(x)}{\sqrt{\sigma_l^2 + G_l^2}} \right) \]

Unknowns: source + attitude + calibration

Residual (O-C) of observation / Downweighting function

Sum over all observations

Merrit function

Observation noise

Excess noise
How to solve: Iterative with Normal Equations and Pre-conditioner (Gauss-Seidel)

<table>
<thead>
<tr>
<th>Source</th>
<th>Attitude</th>
<th>Calibration</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_1 s_2 s_3 \ldots$</td>
<td>$a_1 a_2 a_3 \ldots$</td>
<td>c</td>
</tr>
</tbody>
</table>

- **Source** $(5 \cdot 10^8)$
- **Attitude** $(4 \cdot 10^7)$
- **Calibration** ($\sim 10^6$)

Filled

Sparse

Zeroes
1: Conjugate Gradients

- The most simple scheme to tackle the problem: “Simple Iterations” (SI):

 - $S(A, C)$: Source update
 - $A(S^*, C)$: Attitude update
 - $C(S^*, A)$: Calibration update

 until convergence – very slow!

- Extension is “Accelerated Simple Iterations” (ASI):
 Updates in successive iterations are not uncorrelated
 - Compute “trial” updates for a small number of sources,
 compute extrapolation factor and use this for all the others
 - Baseline in AGIS since ~2008
 - Convergence rate ~2 times better than SI
Conjugate Gradients

• CG standard method in Linear Algebra knows since decades

• History for AGIS
 – “Discovered” for AGIS by LL in 2008
 – Then prototyped in AGISLab by AB
 – Implemented in AGIS during summer 2009

• Different blocks are solved like in SI but
 – Updates are only “provisional” and not applied
 – “Kernel results” from different blocks and auxiliary calculated quantities from the previous iteration are combined to compute the final update
 – This effectively constructs a basis of Conjugate vectors in the space of the unknowns
 – Faster convergence!
CG vs SI/ASI

Contour lines of merit function

Theoretical CG step

Starting point

“simple” iteration 2

“simple” iteration 1

source params

attitude params

x₀
Parallax convergence

CG vs SI comparison

Convergence rate CG vs ASI
Declination error after I27 (ASI)
Declination error after I27 (CG)

Errors smaller by a factor ~20
Astrometric calibration

All calibration effects with relevance for the astrometric data processing that can be modelled as shifts to observed field angles

Old AGIS calibration model:

\[\eta_{\text{obs}} = \eta^0_n + \Delta \eta_x + \delta \eta_y + C_0 (G - G_{\text{ref}}) + C_1 (W - W_{\text{ref}}) \]

\[\zeta_{\text{obs}} = \zeta^0_n + \Delta \zeta_y \]

- AL/AC large scale
- AL small scale
- Linear flux-dependent term
- Linear spectrum-dependent term
Problem with hard-coded calibration

• This is much too inflexible!
• Geometric calibrations may not become more complex in the future but in the end we want to find residual calibration (CTI) effects not considered in IDT/IDU …
• Each change in the model entails software changes
• We want a scheme that is
 – Flexible
 – Extensible
 – efficient
Generic Calibration: Outline

• Extension of base scheme
 – $\eta_{\text{obs}} = \eta_n^0 + \sum E_i^{AL}(l)$
 – $E_i(l) = \sum c_{i,j} \cdot f_{i,j}(l)$

 $f_{i,j}$: elemental calibration functions
 $c_{i,j}$: calibration unit values = to be determined

• The c values are depended on
 – time
 – CCD/gate numbers
 – pixel column
 – telescope number
 – ….

The entirety of all c constitutes the astrometric calibration.
XML configuration

- ?xml version="1.0" encoding="ISO-8859-1"?>
- <AstroCal xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="astrocal.xsd">
 - <DataSpace>
 - <Axis id="0" label="CcdRowNo" origin="0" min="1" max="7" delta="1" discrete="true" distributed="true"/>
 - <Axis id="1" label="AFCCdStripNo" origin="0" min="3" max="11" delta="1" discrete="true" distributed="true"/>
 - <Axis id="2" label="Time" origin="J2012.0" min="0d" max="1840d" delta="115d" discrete="false" distributed="false"/>
 - <Discretization id="1" uniform="true" scale="4"/>
 - <Discretization id="2" uniform="true" scale="2"/>
 - <Axis id="3" label="Telescope" origin="0" min="1" max="2" delta="1" discrete="true" distributed="false"/>
 - <Axis id="4" label="PixelCol" origin="0" min="0" max="11" delta="1" discrete="true" distributed="false"/>
 - <Discretization id="1" uniform="true" scale="2"/>
 - <Discretization id="2" uniform="true" scale="3"/>
 - <Axis id="5" label="CcdRowNo" origin="0" min="1" max="7" delta="1" discrete="true" distributed="false"/>
 - <Axis id="6" label="Time" origin="J2012.0" min="0d" max="1840d" delta="115d" discrete="false" distributed="false"/>
 </Axis>
 - <Axis>
 - </DataSpace>
- <FuncsCollection>
 - <Func id="0" classcal="gaia.cu3.agis.algo.gis.calibration.model.L0" description="1"/>
- <ALEffectsCollection>
 - <Effect id="0" use="true" update="true" description="AL large-scale" dep="*,0,*,-" funcs="0" constraints="gaia.cu3.agis.algo.gis.calibration.model.AlLargeScaleConstraints"/>
 - <Effect id="1" use="true" update="true" description="AL small-scale" dep="*,-,0," funcs="0" constraints="gaia.cu3.agis.algo.gis.calibration.model.AlSmallScaleConstraints"/>
 - <Effect id="2" use="true" update="true" description="Radiation damage" dep="*,1,-,1" funcs="0" constraints="gaia.cu3.agis.algo.gis.calibration.model.NoConstraints"/>
 - <Effect id="3" use="true" update="true" description="Chromaticity" dep="*,2,*,-" funcs="0" constraints="gaia.cu3.agis.algo.gis.calibration.model.NoConstraints"/>
 - <Effect id="4" use="true" update="true" description="Effect X" dep="*,-,2,*,2" funcs="0" constraints="gaia.cu3.agis.algo.gis.calibration.model.NoConstraints"/>
 - <Effect id="5" use="true" update="true" description="Effect Y" dep="*,2,2,2" funcs="0" constraints="gaia.cu3.agis.algo.gis.calibration.model.NoConstraints"/>
 - </ALEffectsCollection>
- <ACEffectsCollection>
 - <Effect id="0" use="true" update="true" description="AC large-scale" dep="*,-,*,-*" funcs="0" constraints="gaia.cu3.agis.algo.gis.calibration.model.NoConstraints"/>
- </ACEffectsCollection>
</AstroCal>

Hyper-cube definition: What parameters does calibration depend on?

Functions definition: What fundamental functional forms does calibration consist of?

Effects definition: What distinct effects constitute the calibration?
Test of gen cal update
Generic calibration: It works!

Simulated periodic BA variation in AL large-scale calibration

Cycle 497: noisy src+att - stopped after 115

- P-FOV
- F-FOV
- Residual P-FOV
- Residual F-FOV
3: Running AGIS in the Cloud

- How do we run AGIS during operations?
 - Big computational task (~10^{20} FLOPS)
 - Baseline so far: On a big machine at ESAC!

- Since about 2 years, Cloud computing is a big hype
 - Really nothing more than a collection of virtual machines (“instances”) with strictly defined profiles
 - Do not know where they are or what they are physically
 - Service providers: Several but Amazon is becoming a dominant player ...

- Advantages
 - 100% availability – no worries about maintenance, hardware failures, network etc.
 - Elasticity: My “virtual cluster” can grow or shrink as I need it at every moment in time
 - Cost-effectiveness: Only pay for CPUs and disks when I need them
In practice …

• Have run AGIS successfully in the Amazon Cloud last year
 – 2 Mio sources
 – ASI cycle with ~40 iterations
• Trying to step up to 50 Mio sources last couple of months
 – Current ESAC machine to small for this data set
 – Performance problems – likely issues in AGIS
 – No worries, this is normal work, will fix it
• Conclusions so far:
 – Running AGIS in the Cloud works
 – Remains option for operations
 – Cost-effectiveness: Yes, clearly now. During operations it will depend on how often we run AGIS!
Conclusion

AGIS development is on track

I am convinced we will have a good system that will give us the best possible astrometric catalogue for Gaia!