Study of short period variables and small amplitude periodic variables

Mihály Váradi

supervised by:
Laurent Eyer, Nami Mowlavi
Is Gaia able to detect short periodic phenomena?
Is Gaia able to detect short periodic phenomena?

How to assess the performance of Gaia on short period variability?
Is Gaia able to detect short periodic phenomena?

How to assess the performance of Gaia on short period variability?
Is Gaia able to detect short periodic phenomena?

Properties of objects

How to assess the performance of Gaia on short period variability?
Is Gaia able to detect short periodic phenomena?

Properties of objects

How to assess the performance of Gaia on short period variability?
Is Gaia able to detect short periodic phenomena?

How to assess the performance of Gaia on short period variability?

Properties of objects

Detection Algorithm + Statistics
false positive
false negative

Mission Properties
Is Gaia able to detect short periodic phenomena?

How to assess the performance of Gaia on short period variability?

Properties of objects

Tests on simulated data

Detection Algorithm + Statistics

false positive
false negative
Is Gaia able to detect short periodic phenomena?

Properties of objects

Missions Properties

How to assess the performance of Gaia on short period variability?

Tests on simulated data

Detection Algorithm + Statistics

false positive
false negative
Types & Properties Of Short Period Variables

<table>
<thead>
<tr>
<th>TYPE</th>
<th>periods [minute]</th>
<th>amplitudes [mag]</th>
</tr>
</thead>
<tbody>
<tr>
<td>β Cep</td>
<td>96 - 480</td>
<td>< 0.1</td>
</tr>
<tr>
<td>δ Scuti stars</td>
<td>28 - 480</td>
<td>0.003 - 0.9</td>
</tr>
<tr>
<td>roAp stars</td>
<td>6 - 21</td>
<td>< 0.01</td>
</tr>
<tr>
<td>EC14026 stars</td>
<td>1.3 - 8.3</td>
<td>< 0.03</td>
</tr>
<tr>
<td>Betsy stars (PG1716)</td>
<td>33 - 150</td>
<td>< ~0.01</td>
</tr>
<tr>
<td>ZZ Ceti stars (DAV)</td>
<td>0.5 - 25</td>
<td>0.001 - 0.3</td>
</tr>
<tr>
<td>V777 Her stars (DBV)</td>
<td>2 - 16</td>
<td>0.001 - 0.2</td>
</tr>
<tr>
<td>GW Vir stars (DOV + PNNVs)</td>
<td>5 - 85</td>
<td>0.001 - 0.2</td>
</tr>
<tr>
<td>Brown Dwarf pulsators</td>
<td>~60 - ~210</td>
<td>?</td>
</tr>
<tr>
<td>eclipsing white dwarfs</td>
<td>> 6</td>
<td>< 0.75</td>
</tr>
</tbody>
</table>

DQV, ...

Short period < 120 min
Properties Of Objects

short periods: < 120 min

High astrophysical interest

- pulsation theories
- stellar evolution
- physics of degenerate matter
- gravitational waves
Properties Of Objects - Complex Lightcurves

A typical ZZ Ceti star GD29-38

ZZ Ceti lightcurve simulator:
- work of D. Koester, S. Schlundt
- code implemented by M. Varadi
- collaboration with S. Jordan
Pulsating DA white dwarf star EC 14012–1446 Handler et al. (2008)
Is Gaia able to detect short periodic phenomena?

How to assess the performance of Gaia on short period variability?
Is Gaia able to detect short periodic phenomena?

Properties of objects

How to assess the performance of Gaia on short period variability?
Is Gaia able to detect short periodic phenomena?

Properties of objects

How to assess the performance of Gaia on short period variability?

Mission Properties
Gaia Mission Properties

• All sky observations (one billion stars)

• Multi-epoch data over 5 years
 ‣ photometric (G band)
 ‣ spectrophotometric
 ‣ radial velocity (<17 mag)

• Resolution in time:
 ‣ around 70 transit measurements per source in average
 ‣ 1 transit: 9×4.4 sec integration

Tens of millions of variables expected
Gaia Mission Properties: Photometric Precision

<table>
<thead>
<tr>
<th>V [mag]</th>
<th>σ [mmag]</th>
</tr>
</thead>
<tbody>
<tr>
<td>~ 14</td>
<td>3</td>
</tr>
<tr>
<td>~ 16.6</td>
<td>10</td>
</tr>
<tr>
<td>~ 20</td>
<td>60</td>
</tr>
</tbody>
</table>

C. Jordi modified by M. Varadi
An example on **asteroseismology**: the EC14026 stars

<table>
<thead>
<tr>
<th>BASIC PROPERTIES OF PG 0014+067 ($V = 15.9 \pm 0.1$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity</td>
</tr>
<tr>
<td>log g</td>
</tr>
<tr>
<td>T_{eff} (K)</td>
</tr>
<tr>
<td>M_*/M_\odot</td>
</tr>
<tr>
<td>log (M_{env}/M_*)</td>
</tr>
<tr>
<td>R/R_\odot(M_*, g)</td>
</tr>
<tr>
<td>L/L_\odot(T_{eff}, R)</td>
</tr>
<tr>
<td>M_V(g, T_{eff}, M_*)</td>
</tr>
<tr>
<td>$d(V$, $M_V)$ (pc)</td>
</tr>
<tr>
<td>P_{rot} (hr)</td>
</tr>
<tr>
<td>V_{eq}(R, P_{rot}) (km s$^{-1}$)</td>
</tr>
</tbody>
</table>

Complete asteroseismological analysis of PG 0014+67 - Brassard et al. (2001)

- Astrophysical parameters determination, mode identification
- ~10 hr measurements in 5 days with the 3.6m CFHT

BUT With Gaia we focus on detection of short period variables
An example on **asteroseismology**: the EC14026 stars

Basic Properties of PG 0014+067 ($V = 15.9 \pm 0.1$)

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Asteroseismology</th>
<th>Spectroscopy</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\log g$</td>
<td>5.780 ± 0.008 (0.14%)</td>
<td>5.77 ± 0.1 (1.73%)</td>
</tr>
<tr>
<td>T_{eff} (K)</td>
<td>34500 ± 2690 (7.80%)</td>
<td>33550 ± 380 (1.13%)</td>
</tr>
<tr>
<td>M_*/M_\odot</td>
<td>0.490 ± 0.019 (3.88%)</td>
<td>...</td>
</tr>
<tr>
<td>$\log (M_{\text{env}}/M_*)$</td>
<td>-4.31 ± 0.22 (5.10%)</td>
<td>...</td>
</tr>
<tr>
<td>$R/R_\odot(M_*, g)$</td>
<td>0.14 ± 0.04 (2.68%)</td>
<td>...</td>
</tr>
<tr>
<td>$L/L_\odot(T_{\text{eff}}, R)$</td>
<td>28.5 ± 10.4 (36.5%)</td>
<td>25.5 ± 2.5 (9.90%)</td>
</tr>
<tr>
<td>$M_V(g, T_{\text{eff}}, M_*)$</td>
<td>4.43 ± 0.24 (5.42%)</td>
<td>4.48 ± 0.12 (2.68%)</td>
</tr>
<tr>
<td>$d(V, M_*)$ (c)</td>
<td>1950 ± 305 (15.6%)</td>
<td>1925 ± 195 (10.1%)</td>
</tr>
<tr>
<td>P_{rot} (yr)</td>
<td>29.2 ± 0.9 (3.08%)</td>
<td>...</td>
</tr>
<tr>
<td>$V_{\text{eq}}(R, P_{\text{rot}})$ (km s$^{-1}$)</td>
<td>6.20 ± 0.36 (5.81%)</td>
<td>...</td>
</tr>
</tbody>
</table>

Complete asteroseismological analysis of PG 0014+67 - Brassard et al. (2001)

- Astrophysical parameters determination, mode identification
- ~10 hr measurements in 5 days with the 3.6m CFHT

BUT With **Gaia** we focus on **detection** of short period variables
Is Gaia able to detect short periodic phenomena?

How to assess the performance of Gaia on short period variability?

Properties of objects
Is Gaia able to detect short periodic phenomena?

How to assess the performance of Gaia on short period variability?

Properties of objects

Mission Properties
Is Gaia able to detect short periodic phenomena?

How to assess the performance of Gaia on short period variability?

Detection Algorithm + Statistics ↓
false positive false negative

Properties of objects

Mission Properties
Algorithm + Statistics

Which algorithm to use to detect short period variability?

- Period search
- Chi square value
- Structure functions
Algorithm + Statistics

Which algorithm to use to detect short period variability?

- **Period search**
- **Chi square value**
- **Structure functions**

Does the maximum peak correspond to a real frequency in a star?
Algorithm + Statistics

Threshold: 99th percentile

Error type II: 0.053
Error type I: 0.014

Snr=2.0 p=10min sample size=5320

Cdf & ccdf

Max peaks amplitude / mean amplitude of the periodogram
Is Gaia able to detect short periodic phenomena?

How to assess the performance of Gaia on short period variability?
Is Gaia able to detect short periodic phenomena?

How to assess the performance of Gaia on short period variability?
Is Gaia able to detect short periodic phenomena?

How to assess the performance of Gaia on short period variability?

Properties of objects

Mission Properties

Detection Algorithm + Statistics

false positive

false negative

Tests on simulated data
Tests on simulated data - Increasing Complexity

- times \rightarrow inverse scanning law \rightarrow AGISLab BH, LE, DH- Lund

- signal \rightarrow 1. monoperiodic
 Eyer & Mignard 2005

 2. multiperiodic
 Mary et al. 2006

 3. ZZ Ceti model
 Varadi et al. 2009

 4. Non-Stationary Spectrum

- noise \rightarrow Gaussian
Test On Simulated Data: Monoperiodic

SNR ~ 2.5

Period recovery percentages

Periods [minutes]

- FOV data
- CCD data
Test on simulated data: Example 1

- 7 input periods
- 5 year long data set
- 82 field transits
- 738 ccd observations
- ZZ Ceti light curve with noise

Up to 3 frequencies with highest amplitudes can be recovered
Example 2: Partial data with stationary spectra

2.5 year, CCD Timeseries with stationary spectrum
Noise: 0.0321 [mag] FOVTRN.ID: 080.0004

Simulated Signal [mag]

Amplitude [mag]

Frequencies [c/d] - 2004April, ZZ Ceti star EC 14012-1446
Freq: 127.36 Amp: 0.009
Freq: 140.25 Amp: 0.011
Freq: 141.99 Amp: 0.014
Freq: 119.71 Amp: 0.024
Freq: 141.32 Amp: 0.048

Amplitude [mag]

Frequencies [c/d] - 2007April, ZZ Ceti star EC 14012-1446
Freq: 163.09 Amp: 0.015
Freq: 140.24 Amp: 0.019
Freq: 118.44 Amp: 0.020
Freq: 119.69 Amp: 0.044
Freq: 112.37 Amp: 0.064

A_{max} = 0.045 at 141.12 [c/d]

A_{max} = 0.074 at 112.37 [c/d]
Example 2: Combined Non-Stationary Spectrum

Success! Gaia photometric error corresponds to 19 mag
Test On Simulated Data: Period Recovery Statistics

<table>
<thead>
<tr>
<th>Signal Description</th>
<th>Periods</th>
<th>Recovery Rate [Percentages]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Noise-Free</td>
</tr>
<tr>
<td>Multiperiodic Sum of Sines</td>
<td>P1</td>
<td>74.5</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>57.5</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>56.5</td>
</tr>
<tr>
<td>ZZ Ceti Model</td>
<td>P1</td>
<td>72.0</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>41.0</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>30.0</td>
</tr>
<tr>
<td>Non-Stationary Spectrum</td>
<td>P1 partial</td>
<td>17.5</td>
</tr>
</tbody>
</table>
Is Gaia able to detect short periodic phenomena?

How to assess the performance of Gaia on short period variability?

Properties of objects

Tests on simulated data

Mission Properties

Detection Algorithm + Statistics
↓
false positive false negative
Is Gaia able to detect short periodic phenomena?

Mission properties

Detection Algorithm + Statistics

false positive
false negative
Is Gaia able to detect short periodic phenomena?

Yes

Properties of objects

Tests on simulated data

How to assess the performance of Gaia on short period variability?

Detection Algorithm + Statistics

false positive

false negative

Mission properties
• We assessed the performance of Gaia on short period variables → short periodic phenomena can be detected
Future work

- On variability detection method:
 - per-ccd slopes
 - calibrate the detection threshold

- Do complete asteroseismological study of a short period variable
Thank You For Your Attention!

Questions?