Can we use the nearby velocity distribution to constrain the properties of the bar and the spiral arms of the MW?

Gaia capabilities

M. Teresa Antoja Castelltort

DAM and IEEC-UB,
Institut de Ciencies del Cosmos de la Universitat de Barcelona

GAIA: At the Frontiers of Astrometry, ELSA conference
Sevres, 7th-11th June 2010

Dra. Francesca Figueras
Dra. Mercè Romero-Gomez
Maria Monguíó
Santi Roca

Dr. Octavio Valenzuela
Dra. Barbara Pichardo
Outline

1. INTRODUCTION
2. TEST PARTICLE ORBIT SIMULATIONS
3. GAIA CAPABILITIES
What are moving groups?

- U V W for 24000 stars:
 Nordström et al. (2004); Asiain et al. (1999a); Torra et al. (2000);
 Reid et al. (2002); Bochanski et al. (2005); Famaey et al. (2005)

- Wavelet denoising

Antoja et al. 2008

Can we use the velocity distribution to constrain the bar and the spiral arms?
What are moving groups?

- **U V W** for 24000 stars:
 Nordström et al. (2004); Asiain et al. (1999a); Torra et al. (2000); Reid et al. (2002); Bochanski et al. (2005); Famaey et al. (2005)

- Wavelet denoising

Antoja et al. 2008
Interest of moving groups

Orbital and resonant effects of the MW spiral arms and bar

Kalnajs (1991)
Only for particular bar orientation and pattern speed!!

MOVING GROUPS:
tool to constrain the properties of the bar and the spiral arms!

SPIRAL ARMS & BAR:
- Mass or strength?
- Pattern speed?
- Orientation?
Outline

1. INTRODUCTION
2. TEST PARTICLE ORBIT SIMULATIONS
3. GAIA CAPABILITIES
Simulation method

- **Initial Conditions:**
 - IC1 cold disk
 - IC2 warm disk
 - IC3 hot disk

- **Potential Model for the MW:**
 - Integrated test particle orbits

- **Analysis of the velocity distribution**

 Integration of test particle orbits

- **Potential Model for the MW:**

 AXISYMMETRIC

 SPIRAL ARMS (Pichardo et al. 2003b)

 BAR (Pichardo et al. 2004)
Strong imprints on the velocity plane, specially near the arms

Branches resembling the observed ones

Crowding at $V \sim -40 \text{ km s}^{-1}$, not only the bar!
Imprints of the spiral arm: vertex deviation
Imprints of the spiral-bar model IC1

Can we use the velocity distribution to constrain the bar and the spiral arms?
Imprints of the spiral-bar model IC1

Can we use the velocity distribution to constrain the bar and the spiral arms?
Direct spiral arm kinematic perturbation

Observationally:
Monguio et al. 2010, in prep.

Theoretically:
Romero-Gomez et al. 2010, in prep.
Testing kinematic perturbation of different models:
- Lin&Shu perturbation?
- Invariant manifolds of the bar potential?
1 INTRODUCTION

2 TEST PARTICLE ORBIT SIMULATIONS

3 GAIA CAPABILITIES
Particular cases:

1) Scutum-Centaurus tangency
2) Perseus arm in the anti-center

Why these positions?
- Particularly rich in resonant substructure
- Regions that experience the spiral arm perturbation

Spitzer/GLIMPSE (Benjamin et al. 2005)
Scutum-Centaurus tangency

\[l = 305^\circ, \beta = 0^\circ, \]
\[\text{dist} = 6.9\, \text{kpc} \]

\[K4-5\, \text{III} \]
\[M_V, (V-I)_i, A_V, A_I \]

\[G \sim 18 \]
\[e_\pi \sim 90\, \mu\text{as} \, (62\%\, !!) \]
\[e_\mu \sim 50\, \mu\text{as/yr} \]
No radial velocities!!

- Radial velocities needed
- Better distances
Scutum-Centaurus tangency

Can we use the velocity distribution to constrain the bar and the spiral arms?

Model

+ GAIA errors
+ survey $e_{VR} = 2 \text{ km s}^{-1}$

+ GAIA errors
+ survey $e_{VR} = 10 \text{ km s}^{-1}$
Perseus arm in the anti-centre

\[l = 180^\circ, \beta = 0^\circ, \]
\[\text{dist} = 2.0 \text{kpc} \]

\[M_V, (V-I)_i, \quad A_V, A_I \]

<table>
<thead>
<tr>
<th>ST</th>
<th>G</th>
<th>(e_\pi (\mu\text{as}))</th>
<th>(e_\mu (\mu\text{as}))</th>
<th>(e_{VR} (\text{km s}^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>B5 V</td>
<td>13</td>
<td>8 (2%)</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>K5 III</td>
<td>13</td>
<td>8 (2%)</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>A5 V</td>
<td>15</td>
<td>23 (5%)</td>
<td>12</td>
<td>20</td>
</tr>
</tbody>
</table>
Can we use the velocity distribution to constrain the bar and the spiral arms?

Very good job in the Perseus arm!
Can we use the velocity distribution to constrain the bar and the spiral arms?