Unresolved Galaxies with Gaia

NKUA (National & Kapodistrian University of Athens) group for Gaia

**Senior permanent staff:**
- Prof. M. Kontizas, NKUA (PI)
- Dr. E. Kontizas, NOA
- Dr. I. Bellas-Velidis, NOA
- Dr. A. Dapergolas, NOA

**Post-Docs:**
- Dr. E. Livanou, NKUA

**PhD students:**
- Antonios Karampelas, NKUA
- Maya Belcheva, ELSA, Marie Curie Fellow, NKUA
- Grigor Nikolov (jointly with Sofia University)

NKUA | June 2010 | ELSA
external collaborators

- Prof. Brigitte Rocca-Volmerange, IAP, Paris
- Dr. Paraskevi Tsalmantza, MPIA, Heidelberg
- Dr. A. Vallenari, University of Padova
- Dr. C. Bailer-Jones, MPIA, Heidelberg
Gaia will observe millions of stars in our galaxy. Additionally, at least a few million unresolved galaxies (seen as point sources). The classification of objects will be done during the mission, so a very large effort is being done to prepare the necessary software in order to classify the various sources detected.

Our team is developing suitable libraries of synthetic galaxy spectra and is preparing the necessary software (UGC) for classification and parametrization of the observed galaxies.

For the preparation of synthetic spectral libraries we use existing code, of galaxy population synthesis, PEGASE 2. The major requirement is to obtain not just a typical set of synthetic spectra, but to enlarge the sample in order to predict all the variety of the expected galaxy spectra. (Collaboration with IAP).
A. Classification and parametrization of Unresolved galaxies

✓ Libraries of galaxy spectra for classification and parametrization
✓ GWP-S-832 Unresolved Galaxy Classifier

B. Galaxies resolved by Gaia

✓ Models of the galaxies resolved by Gaia for the GaiaSimu
The MCs, and the nearby galaxies of the Local Group
**GWP-S-832 BP/RP Libraries**

BP/RP Libraries: UgcLib2a GaiaGOG Simulated Spectra

*Typical galaxy spectra simulated for GAIA BP/RP*

- Simulated spectra
  - E
  - Sa
  - Sb
  - Sbc
  - Sc
  - Sd
  - Im

<table>
<thead>
<tr>
<th>wavelength [Å]</th>
<th>counts [photons]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3000</td>
<td>0</td>
</tr>
<tr>
<td>4000</td>
<td>0</td>
</tr>
<tr>
<td>5000</td>
<td>0</td>
</tr>
<tr>
<td>6000</td>
<td>0</td>
</tr>
<tr>
<td>7000</td>
<td>0</td>
</tr>
<tr>
<td>8000</td>
<td>0</td>
</tr>
<tr>
<td>9000</td>
<td>0</td>
</tr>
<tr>
<td>10000</td>
<td>0</td>
</tr>
<tr>
<td>11000</td>
<td>0</td>
</tr>
</tbody>
</table>

NKUA June 2010 ELSA - GREAT
The 1st library of synthetic galaxy spectra. The SDSS galaxies, the galaxies produced in the first library and the typical synthetic spectra of PEGASE.2 are presented with black, red and yellow dots respectively.
2) The 2nd library to optimise the coverage of the galaxy types to be observed by Gaia (Tsalmantza, P., Kontizas et al., 2009, A&A, 504, 1071)

Black dots are SDSS galaxies and green dots the 8 typical synthetic spectra of Pegase 2.

Ellipticals (red).

Spirals (light blue).

Irregular (blue).

QSFG (magenta)
3) A semi-empirical Library

To present a large set (about 30 000 galaxies) real spectra (observed by SDSS) extended to the spectral range of Gaia and parametrised by the same code Pegase 2.

AND WHAT is NEXT?
There are overlaps and some unrealistic spectra
Research opens new questions!!

Gaia preparations for DPAC requirements stimulated further scientific investigation.
So we are proposing an Optimization of the Library!!!!
2) The 2nd library has to be optimised for the coverage of the galaxy types (Tsalmantza, P., et al., 2009, A&A, 504, 1071)
Black dots are SDSS galaxies and green dots the 8 typical synthetic spectra of Pegase 2.

Ellipticals (red).

Spirals (light blue)

Irregular (blue)

QSFG (magenta)
Principal Component Analysis (PCA) is a technique used to analyse multidimensional datasets. It is an efficient method to extract information from a large set of data allowing us to identify patterns and correlations in the data that otherwise would hardly be noticed.

Mathematically it is defined as a linear orthogonal transformation that expresses the data in a new coordinates system such that the first of these new coordinates, E1 (Eigen vector 1) contains the largest variance fraction, the second E2 contains the second largest variance and so on.
grey : all 2\textsuperscript{nd} library  blue – green – red: Spirals

\begin{equation}
SFR(t) = \frac{1}{p_2} M_{\text{gas}}(t)^{p_1}
\end{equation}
Grey: all 2nd library blue – green – red: Spirals

\[ \text{SFR}(t) = \left( \frac{1}{p^2} \right) M_{\text{gas}}(t)^{p_1} \]
Ellipticals

blue: With emission lines

green: Low SFR

red: High SFR

\[ \text{SFR}(t) = \frac{p_2}{p_1} \cdot e^{-\frac{t}{p_1}} \]
<table>
<thead>
<tr>
<th><strong>Function:</strong></th>
<th>Classifies unresolved galaxy spectra and estimates key astrophysical parameters (AP)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Control:</strong></td>
<td>CU8 Discrete Source Classifier marks the spectra as unresolved galaxy class</td>
</tr>
<tr>
<td><strong>Input data:</strong></td>
<td>Combined GAIA BP/RP spectrophotometry</td>
</tr>
<tr>
<td><strong>Method:</strong></td>
<td>Supervised training based algorithm</td>
</tr>
<tr>
<td><strong>Output:</strong></td>
<td>Class probability and values prediction for APs to be included in the GAIA database</td>
</tr>
</tbody>
</table>

Implemented in **UGCv7**, passed H1 science chain tests (**UGCv8** with highly extended functionality currently under development)

**CU8 DSC → UGC linkage** based on object class probability matrix provided by DSC

**GAIA BP/RP simulated spectra library:**
**UgcLib5** (G=15, Av=0, z=0, SE, noiseless), based on Pegase2 synthetic spectra Lib3.

Support Vector Machines (**SVM**) algorithm in “classifier” and in “regression” mode.

**Class probability** **galType** (E,S,I,B), **SF galAPs** (SfrP1,SfrP2,SfrP3,Infall) and redshift and TGE parameters estimate
CU2/DU3 Universe model

a) Unresolved galaxies

b) Resolved Galaxies (see Belcheva)

2.1. **Spiral galaxies**
   For the production of the spiral galaxy spectra (Sa, Sb, Sbc, Sc and Sd) we have used the scenarios described by Le Borgne & Rocca-Volmerange (2002) and Fioc & Rocca-Volmerange (1997).

2.2. **Irregular Magellanic Galaxies (Im)**

2.3. **The early type galaxies**
   Normal Elliptical or **SO** (E-SO):
   Red Elliptical: **E2**:

2.4. **The Quenched Star Forming Galaxies (QSFG)**
   The scenario of a Quenched Star Forming Galaxy from the 2nd library (Tsalmantza et al. 2009), is also used to simulate the bluest populations of the color-color diagram of galaxies from the SDSS observational photometry and therefore was chosen to represent this galaxy type
Colour-colour diagram from synthetic typical galaxy types from Pegase.2 for $z=0.0$ and for inclination=45.0 degrees plotted over SDSS galaxies with $z \leq 0.20$. 
Colour-colour diagram from synthetic typical galaxy types from Pegase.2 for the different $z$ values between 0.00 and 0.20 plotted over SDSS galaxies selected to cover the same $z$ range. Inclination is set to 45.0 deg again.

E. Livanou et al, Livelink
Fig. 2.— Images of red \((g - r > 0.75)\) and concentrated \((ns > 4.0)\) and inclined \((b/a < 0.5)\) galaxies from our sample. Clearly these red, concentrated galaxies are disk galaxies. Besides the cuts stated the only selection in these images is that the galaxy has a large angular size so that it makes a nice image. Axis ratio is an important diagnostic of galaxy type.
Colour-colour diagram from synthetic typical galaxy types from Pegase.2 for the different z and inclination values plotted over the SDSS galaxies selected to cover the same z range.
How many unresolved galaxies will be observed by Gaia Photometry BP/RP?

Those observed like point sources are expected to be about $(1-5) \times 10^6$

The galaxies will be observed for 5 years!

This is a unique survey of this kind.
What Gaia will offer to galaxies’ research?

1) A very large homogeneous sample \((1-5) \times 10^6\) of spectra of galaxies up to \(z=0.4\) from all the sky.

2) A low resolution sample of spectra very useful to test galaxy evolution models.

3) Detect unknown variabilities.

4) Search for colour indices, important towards the understanding of the physics of galaxies particularly in connection with other surveys such as SDSS etc.
THANK YOU CATHERINE AND ALL LOC MEMBERS
An excellent meeting!!

THANK YOU LENNART
We appreciated your way of coordinating the RTN!!

Thank you all members of the RTN for your collaboration all these years. It has been an unforgettable experience!!