CU6 Spectroscopic First Look

Instrument and data sanity check

Jean-Michel Désert, Guillaume Hébrard, Alain Lecavelier, Roger Ferlet, Alfred Vidal-Madjar David Katz Stefan Jordan, Michael Biermann, Ulrich Bastian

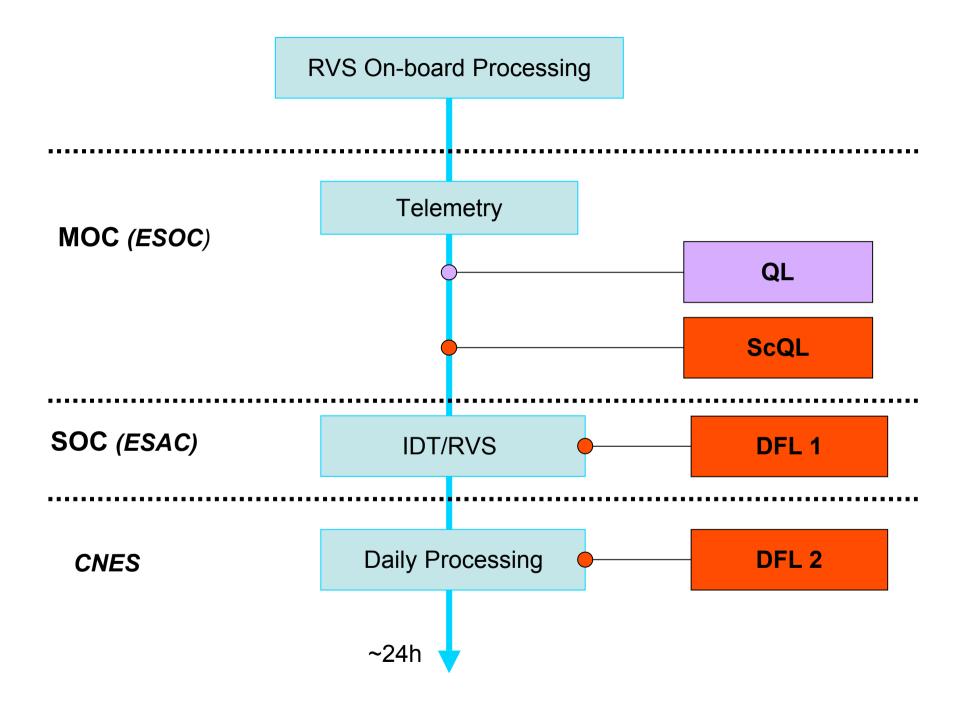
CU6 Spectroscopic Processing 1st Workshop, 6-7 March 2006, IAP

Top level work packages

From CU6 Processing development plan (GAIA-C6-SP-OPM-DK-002-1)

The 4 "common" Top-level work packages: **GWP-C-601-00000** Coordination & management of CU6 **GWP-D-602-00000** Architecture & technical coordination of CU6 **GWP-D-603-00000** Software quality assurance **GWP-C-604-00000** Integration of CU6 sub-systems & test of CU6 system

The 8 "sub-system" Top-level work packages: **GWP-D-609-00000** Host framwork development, validation & test **GWP-S-610-00000** Spectroscopic first look, sanity check & science alerts **GWP-S-620-00000** Spectra extraction **GWP-S-630-00000** Calibration of the spectroscopic instrument **GWP-S-640-00000** Radial velocity zero point **GWP-S-650-00000** Single transit analysis **GWP-S-660-00000** Multiple transits analysis


Spectroscopic first look & science alerts

From CU6 Processing development plan (GAIA-C6-SP-OPM-DK-002-1)

GWP-S-610-00000 Spectroscopic first look & science alerts

GWP-C-610-01000 Management, configuration management & interfaces of FL/SA
GWP-C-610-02000 Detailed functional analysis of first look and science alerts
GWP-S-610-03000 Interface with Quick Look group
GWP-S-610-04000 Science Quick Look: on-board processing logs
GWP-S-610-05000 Science Quick Look: raw data
GWP-S-610-06000 Detailed First Look: calibrations
GWP-S-610-07000 Detailed First Look: radial and rotational velocities
GWP-S-610-08000 Detailed First Look: faint stars
GWP-S-610-09000 Science alerts

Intermediate data treatments (IDT) Science Quick Look (ScQL) Detailed first look: (DFL) Quick Look: (QL)

Responsabilities within the RVS First Look task

Task	Definition	Development	Integration	Operation
QL	ESOC (input from industry, CU3, CU6)	ESOC	ESOC	ESOC
ScQL	CU3, CU6, ESOC	under discussion	ESOC	ESOC
DFL Monitor (using IDT)	CU6, CU3	CU6	ESAC	ESAC (automatic)
DFL Evaluator (using IDT)	CU6, CU3	CU6	ZAH (CNES)	$\begin{array}{c} {\rm CU3} \\ ({\rm mirrored} \rightarrow {\rm CU6}) \end{array}$
DFL Monitor	CU6, CU3	CU6	CNES	ESAC (automatic)
DFL Evaluator	CU6, CU3	CU6	ZAH (CNES)	CU3 (mirrored $\rightarrow CU6$)

GWP-C-610-01000 Management, configuration management & interfaces of FL/SA

GWP-C-610-01100 Planning, schedule, internal resource, action tracking & followup
GWP-C-610-01200 Facilities, tools & communication
GWP-C-610-01300 Document & software reviewing, bug tracking
GWP-C-610-01400 Validate result data
GWP-C-610-01500 Interfaces: requests for simulation, auxiliary data, etc...

GWP-C-610-02000 Detailed functional analysis of first look & science alerts

GWP-C-610-02100 Definition of functional requirements GWP-C-610-02300 Feed-back on data model GWP-C-610-02400 Definition of data flows GWP-C-610-02500 Definition of data volume

GWP-S-610-03000 Interface with Quick Look group

[To Be Defined] With MOC (ESOC) via CU3

On-board data treatments and telemetry

On-board data treatments usefull for FL:

- Detection of sources by the sky-mappers:
 List of t,y,F for detected objects + SSM windows
- Selection of samples and attributes windows:
 Using t,y,F from detection, select the MBP and RVS samples that should be send to the ground

Perform CCD to CCD homogenizing and co-addition yield also « on-board processing log » [To Be Confirmed]:

- List and locations of rejected cosmics (or just number of rejected cosmics if too heavy for the telemetry stream)
- □ Maps of non-coadded CCDs (if not too heavy for telemetry stream)
- □ Total counts (TBC test compression/decompression)

Telemetry:

On-ground decoding/decompression of HK data

Quick look

> On-ground decoding/decompression of sky-mapper, MBP and RVS data

ScQL: « on-board processing log »

<u>GWP:</u> GWP-S-610-04000 <u>Objective:</u> Test the good behaviour of the on-board processing <u>Execution:</u> ESOC

Cosmic ray tests [if on-board co-addition exists] Constant rate (TBC) Random locations

Rejected samples [if on-board co-addition exists] Constant rate (TBC) Random rate from CCD / CCD

Compression/decompression Check no-modification of total counts

On-board selection [if windowing mode confirmed –very likely] Check attribution of windows with respect to: e.g. magnitude, location on CCD

Execution: ESAC

Cross-match SSM RVS data:

[TBC: maybe unnecessary with new design because of the windowing mode]

Re-generate link between object and corresponding samples in raw images/ribbon (using on-board selection algorithms)

Refine centroding and flux

Perform cross-matching with objects in main Database (object ID)

DFL1 : « IDT data »

<u>GWP:</u> GWP-S-610-05000

<u>Objective</u>: check the good quality of the raw data with minimal or no use of IDT data **<u>Execution</u>**: ESAC

Model the windows (using previous calibrations : overall response, spectral dispersion law, SSM data : locations in FP and MBP data : flux, color index) and compare to real data

Test : stability of overall response, good location of spectra OR if too heavy for processing power, just sum of the flux in the window.

Check spectra length : select bright, little-crowded, late type stars + identify Ca lines in spectra + check distance in samples between Ca lines. *Test : first order stretches*

Check spectra height Test : PSF AC

Check PSF AL profile : derive line widths distribution, analysis « narrow-line part » of the distribution

Test image focus

From ESAC to CNES

- Ingestion in the main database
- Transfer raw and associated data from ESAC to CNES/nominal pipeline
- Execute daily derivation of the calibration: bright stars <u>Execution:</u> CNES

Extraction: extraction, apply calibration, clean & subtract background on bright stars

- > Derivation of RV, vsini of bright stars
- Calculate new calibrations from bright stars

DFL2 - Part 1/3: « Calibrations »

<u>GWP:</u> GWP-S-610-06000

Objective:

(1) Monitor the good health of the instrument (effects that may/would have been missed by DFL calibrations)

(2)Check the quality of the process of deriving the calibrations **Execution:** CNES

 \geq [P1] Monitor the evolution of the radial and rotational velocities for bright stars.

>[P1] Compare derived and known a-priori RV and v sin i for bright reference stars.

>[P0] Monitor the evolution of the calibration parameters: e.g. spectral dispersion law, overall throughput, Read-out noise, etc...

>[P1] Monitor the evolution of the residuals between the calibrated spectra of the day and previous observations with Gaia

>[P0] Analyse the residuals between the calibrated spectra of the day and groundbased spectra for reference stars.

Execute daily derivation of radial & rotational velocities <u>Execution:</u> CNES

> Extraction:

Extraction, apply calibration, clean & subtract background on all stars

> Derivation of RV, v sin i of stars V < 15

DFL2 - Part 2/3: « radial & rotational velocities

>>

GWP: GWP-S-610-07000

Objective:

(1) Monitor the good health of the instrument (effects that may/would have been missed by DFL calibrations)
 (2)Check the quality of the process of deriving the calibrations
 <u>Execution:</u> CNES

 \geq Monitor the evolution of the radial and rotational velocities for stars V<15.

 \succ Compare derived and known a-priori RV and v sin i for stars V<15.

DFL3 - Part 3/3: « Faint stars »

<u>**GWP:**</u> GWP-S-610-08000

Objective:

(1) Monitor the good health of the instrument (effects that may/would have been missed by DFL calibrations)
 (2)Check the quality of the process of deriving the calibrations
 <u>Execution:</u> CNES

> Monitor the evolution of the residuals between the calibrated spectra of the day and previous observations with Gaia (V > 15 or subset of stars)

Techniques: co-addition of pixels or co-addition of spectra, ...

Collaboration is welcome...