

GAIA

Quality Assurance Activity

CU6 – 1st Workshop

Thierry.Levoir@cnes.fr

Quality Assurance WP

- GWP-T-x03-00000 Quality assurance and conf. management for CUx
- GWP-T-x03-10100
- GWP-T-x03-10100
- GWP-T-x03-10200
- GWP-T-x03-10300
- GWP-T-x03-10400

Quality assurance

Write Soft. Quality Assurance Plan

- **Document reviewing**
- Software reviewing
- **Quality Assurance Control**

To obtain a satisfactory software quality level for application software

- Reliable
- Easy to maintain
- With Performance and load capacity

By giving common rules and recommendations

Essential for a project

- Where the final system will integrate components from
 - Hundreds of developers from a large number of institutes

• Where corrective and enhancements maintenance will cover the period 2012-19

QA CNES activities

Leading CU1 QA WP

- Provide a generic Product Assurance Plan (PAP) for CUx
 - To be validated by CU1
 - To be agreed by DACE
- Tools for Quality Assurance (GWP-T-103-11000)
 - Control, validation and testing tools

■ Leading QA activities for CU4, CU6, CU8

- QA Support to DU
 - To specialize PAP for CUx purpose
 - For Document reviewing
 - For Software reviewing
 - For Quality Assurance Control

• Engineering Support to DU

- QA Tools
- Other Tools (from GWP-T-110-00000 Coordination common software resources)
 - Environment, development,

TERMINOLOGY

Through Next figures :

- function :
 - part of a logical model used to decompose the functionalities expected to be performed by a system. This logical model is an implementationindependent model of software items used to analyze and document software requirements.
- Scientific algorithm:
 - mathematical, formal or graphical description of a scientific processing. This description will be an input for the software implementation.
- interface:
 - depending the need, the following interface terminology must be used:
 - Data interface : data exchange between Software products
 - Service interface : description of means that are set between systems to provide exchange of data.
 - Dependency : API call or link between different software products or units.

system/subsystem:

- set of interdependent hardware and software elements constituted to achieve a given objective by performing a specified function. System is composed of subsystems.
 - For GAIA, the term System is implicitely related to the overall GAIA data processing system (overall system)
 - The subsets of the overall system that are installed and operated in the various Data Processing Center (IDT, First look, AGIS, Photometry, Object processing...) are subsystems: : a GAIA subsystem will be the result of the integration of Software products and/or Software Units within an host infrastructure in the Data Processing Center
 - The term system may be used more widely with the condition to be precede by its name : i. e the GIBIS System

software component : part of a software system

- NOTE 1 Software component is used as a general term
- NOTE 2 Components can be assembled and decomposed to form new components. In the production activities, components are implemented as modules, tasks or programs, any of which can be configuration items.
- software product :
 - set of computer programs, procedures, documentation and their associated data. A software product is the result of a unit of work (DU, WP, ...) for which an organization is set (responsible, developers, ...). The software product life cycle and management is defined through a common set of rules.
- software unit/module :
 - program or library that is part of a software product and which could not be divided. In particular, software interfaces shall be identified and described at this level.

ideal case

Reality ?

PAP & Engineering Dispositions document

Comes from

- "Simplified Quality Assurance provisions for software development"
 - Part of ECSS-E-80

Addresses CUx for Scientific development (DU/WP)

- Contents
 - QA provisions
 - For instance about the development cycle
 - What has to be provided during specification, design, ...
 - Engineering dispositions
 - For instance :
 - Tests shall be automated with JUNIT.
 - Developers shall have separated environment for development and for execution
 - When needed, those dispositions are given with example to be used directly

Coding standards are in separated documents

- Java coding standard and Guideline document
- ...?

PAP & Engineering Dispositions document

Important point

- The development cycle is iterative
 - Each iteration provides more functionalities to the CUx System
 - May reveal issues quicker
 - Each CU, through the development plan :
 - Will have to determine the number of iteration and their
 - Objectives,
 - Activities planned,
 - Completion criteria.
 - In concordance with the overall GAIA system planning

Programming Language

questionnaire

- main objective
 - Define and dimension the JAVA support actions
 - Determine if an additional language is needed
- + 41 replies
- Main observations :
 - Good availability of developers until the end of mission
 - Strong determination to reuse existing libraries or SW already developed in laboratories
 - Most developers have no experience in cooperative development

Language

The language skills are extremely varied:

• Fortran (77, 90, 95), C, C++, JAVA, R, MatCad, MIDAS, Basic, Visual Basic, Pascal, Labview, IDL, Perl, TCL, Yorick, Mathlab, AWK, Python, Bash, ...)

Opinion on JAVA:

Of those who do not know Java (41 – 6 = 35 people), 25 have a positive or very positive opinion on the transition to JAVA and are prepared to learn this language.

Main objections on Java choice

- Need to translate codes previously developed and validated through years of use.
 - We cannot expect to obtain the same level of validation for codes transcribed into Java.
- Java computation performance is insufficient
 - (it appears, on the basis of the ESAC evaluation, that this objection is no longer relevant)
- We under-estimate the training time required
- Greater development time will be required due to lack of experience
- Transcription into JAVA should be handled at CU or DPC level.
- Note: those familiar with JAVA and other languages see no special difficulties in implementing in Java for GAIA.

Language

- Java is the programming language recommended by the consortium and recommended by CNES for CUs 4, 6 and 8.
 - for both developed reused laboratory :
 - reused codes must be transcribed into JAVA, otherwise an existing Java library offering equivalent features will be used.

Actions required (CU1 and DPC from 2006) :

- JAVA training,
- support for the translation of existing codes into JAVA,
- support for setting up development environments,

authorization to use Fortran on a case by case basis :

• With the following conditions:

- need to operate in a standalone environment
 - no interaction between different languages in the same executable (no calls to Fortran functions from Java or vice versa)
- comply with the Fortran ISO standard (no use of features specific to a particular compiler)
- Compliance with the coding standards,
- With the following disadvantages:
 - Less support and tools
 - Data access may turn out to be much slower since less flexible than with JAVA

Environment & Workshop

Wiki version of PAP document will be available

- Ensure to use an up to date Version
- Allow an easy "copy and paste" use

Developer Toolkit

- A developer Toolkit will be provide
 - This Toolkit has to be defined in CU1 framework
 - Include
 - Environment tools (language, library, ..)
 - Development tools (IDE, ...)

Quality, Java, Tools Workshop

- Exact contents will be defined in march
- The idea is
 - To give "à la carte" course
 - To get to a common way to work

Planning

Mid 2006

- PAP validated
- October 2006
 - Specialized PAP for CUx ready

Workshop QA, Tools, Java

- March 2006 : schedule defined
- June 2006 : Number 1
- October/November 2006 : Number 2

Developer Toolkit

• Ready : mi 2006

Support Web Site :

October 2006