Single transit analysis: objectives

- Analyse single-epoch spectra to:
 - Perform a coarse characterization of the source/spectra:
 - Derive the RVS magnitude of the source
 - Detect lines in emission
 - Derive the epoch radial velocity (single & multiple lines spectra)

Derive the epoch rotational velocities (single & multiple lines spectra)

Derivation of radial and rotational velocities

- Several algorithms developed in parallel: e.g.
 - Cross-correlation in data space
 - Cross-correlation in Fourier space
 - Minimum distance method
- Same set of test data (covering "all" cases: hot stars, cold stars, high S/N, low S/N, ...) used to test all algorithms
- Merits and drawbacks of the algorithms assessed using this common data set
 - Cross-correlation might be better suited for cold stars (TBC)
 - Minimum distance method might be better suited for hot stars (TBC)

Optimising radial & rotational velocities algorithms

- Common set of test data "upgraded" every 6 months
 - More and more realistic modelling of the instrument
 - More and more realistic description of the stars
 - More and more realistic description of the sky
- Cycle of 6 months
 - Assess the performance of the algorithms (new data set)
 - Optimize the algorithms (new data set)

GWP-S-650-00000 Single transit analysis (1)

- <u>GWP-S-650-00000 Single transit analysis</u>
 Viala (Co)
- GWP-C-650-01000 Management, configuration management & interfaces
 Viala (Co)
- GWP-S-650-02000 Definition test campaigns & comp. of algorithms perform.
 - Viala (Co), David, Gomboc, Prsa
- GWP-D-650-03000 Detailed functional analysis of sing. transit sing. lines
 Viala (Co), Delle Luche, Royer, Frémat
- GWP-S-650-04000 Overview of existing techniques for spectra analysis
 TBD
- GWP-S-650-05000 Coarse characterization of sources
 - Martayan (TBC)
- GWP-S-650-06000 Radial & rot. velocity CC w. template/mask in data space
 - Delle Luche (Co), Viala, Royer

GWP-S-650-00000 Single transit analysis (2)

- GWP-S-650-07000 Radial velocity by CC in Fourier space
 Frémat (Co), Viala, Delle Luche, Royer
- GWP-S-650-08000 Rotational velocity by Fourrier transform
 - Frémat (Co), Viala, Delle Luche, Royer, Jankov (to be contacted)
- GWP-S-650-09000 Radial and rotational velocity by minimum distance method
 Blomme
- GWP-S-650-10000 Rotational velocities by Neural network
 Kaempf (TBC)
- GWP-S-650-11000 Radial and rotational velocities for multi-l by TODCOR like method
 Gosset (Co), Rauw, Postdoc
- GWP-S-650-12000 Radial and rot. velocities for multi-1 by spectrum subtraction method
 TBD
- Participation TBD:
 - Bouchy, Siebert

CU6-GWP-S-650 Single transit analysis : single and multiple lines spectra

GWP- S-650-06000&07000 Radial and rotational velocities by cross correlation methods

- Objective : Vrad(s) and Vrot(s) determination from one single (calibrated) object spectra (simple or multiple)
- 3 methods :
 - Cross correlation in data space of the object spectrum (simulator) and a template spectrum (auxilliary data)

Delle Luche, Viala (Observatoire de Paris - GEPI)

- Cross correlation in data space of the object spectrum (simulator) and a mask (auxilliary data ?) containing the main spectral features
 Royer (Observatoire de Paris GEPI)
- Cross correlation in Fourier space of the object spectrum (simulator) and a template spectrum (auxilliary data)

Fromat (Absorvatairo Roval do Rolaiano)

USED AT:	AUTHOR: Viala Y., Delle Luche C.	DATE: 10/02/06		WORKING	READER.	DATE	CONTEXT:	
	PROJECT: Extraction of radial velocities	REV:	х	DRAFT				
	NOTES: 1 2 3 4 5 6 7 8 9 10			RECOMMENDED				
				PUBLICATION				

USED AT:	AUTHOR: Viala Y., Delle Luche C.	DATE: 10/02/06		WORKING	READER DA	TE	CONTEXT:
	PROJECT: Extraction of radial velocities	REV:	х	DRAFT			
				RECOMMENDED			
	NOTES: 1 2 3 4 5 6 7 8 9 10			PUBLICATION			

Reference spectrum

11 —

USED AT:	AUTHOR: Viala 1., Delle Luche C.	DATE: 10/02/06		WORKING	READER	DATE	CONTEXT.
	PROJECT: Extraction of radial velocities	REV:	х	DRAFT			
				RECOMMENDED			
	NOTES: 1 2 3 4 5 6 7 8 9 10			PUBLICATION			

Fit top of peak by a parabol

A332

RVDerivation

Source : Source SourceSpectrum : ObjectSpectrum TemplSpectrum : TemplateSpectrum CorrFunction : CorrelationFunction

Source

getSpectralType()
 getID()
 getLuminosityClass()
 getTeff()
 getMetallicity()
 getMagnitude()
 setVRad()
 setVRot()
 setSigmaVRad()
 setQRad()
 setQRad()
 setQRat()
 setMultiplicity()

ObjectSpectrum

\$
setObjectSpectrum()
noiseFiltering()

setTemplateSpectrum()
 shiftWavelength()
 reSampleToObject()

CorrelationFunction CorrCoeff: Object AradVelocity: Object AnbPeaks: Integer AposPeaks: Object

\$
calculateCorrFunction()
\$
getPeaks()

Mathematics

♦gaussianFit() ♦parabolicFit()