

Extraction

CU6 Workshop, Royal Observatory Brussels, 12/13 October 2006

Extraction: overview

- The *Gaia*3 design selects windows on the CCD as for the astrometry and photometry
- Data from individual CCDs are available directly no combination on board; this is helpful for cosmic rays etc.
- Data are collapsed spatially during the CCD readout, so no 2-dimensional information is retained or available for the ground processing (except for very bright stars V<7 where full 2-d information is available).
- Crowding is less of a problem with the Gaia3 design because of the larger image scale \Rightarrow factor ~250 less crowded this is very helpful.
- Nevertheless, above 10000 stars/sq degree (occupation factor 1/25) crowding will remain a problem.

Simulations

•Sky image from Palomar Sky Survey red plates, 1.75 arcmin each side centred on Galactic latitude +10.0° longitude +90.0° Star density: 15000 stars/deg² to V=17.0.

The simulated RVS spectra from the same region of sky on approximately the same scale:

- the limiting magnitude is V=18.5
- brightest stars in the field are V=12.5
- no readout noise in the RVS image (for clarity)
- no AC broadening introduced from the scan law.

Both images on square-root intensity scales. North is up and East to the left.

Extraction: crowded windows

• Gaia3 design allows for overlapping windows:

- Also, *Gaia*3 design has two resolution modes
 - nominal resolution mode $\lambda\!/\!\Delta\Lambda\!\sim\!11500$ for stars down to $G_{RVS}\!<\!10$
 - low resolution mode $\lambda/\Delta\Lambda\!\sim\!5000$ for fainter stars to reduce readout noise

or

							1		1				

Extraction: mixed resolution

• Some spectra will have a mix of low and nominal resolution mode

- Faint object spectra or parts of spectra which are on the nominal resolving power sampling will be rebinned digitally on board onto the coarser sampling
- All of this leads to calibration issues (see next presentation).

RVS Window Paving

• There is a large number of possible different mixtures of windows.

Makes the extraction process complex

Priorities

 At TDI2 the bright star window is not selected for observation if there are not enough samples (<65) – implications for calibration (see later)

Extraction: modelling

- Extraction will be a complex process because of the absence of 2-d information
- In non-overlapped windows, the situation will be simple.
- For overlapped windows, much greater attention will be required to modelling the data
 - information will be needed from the RP and astrometry
 - the overlapped flux profiles will need to be predicted
 - the prediction and observed RVS fluxes will be compared
 - some iteration will be required, at later phases using the radial velocity derived from earlier scans
 - some quality of fit parameters (eg χ_v^2) will need to be derived
- Once a good match is obtained to the observed data, the degree of mixing is known, and can be subtracted from each of the traces in the overlapped windows to produce the deblended traces.

Extraction: background

- CCD bias and any charge-injection will be removed
- The diffuse background may be available from the end of each window (or perhaps Virtual Object windows – still TBD)
- The background due to
 - point sources and
 - extended sources

will be modelled, using information from RP and Astro.

- This information needs to be transformed backwards into instrument space from the calibrated astro and RP data
 - $\Rightarrow 1$ forward and 1 reverse calibration
- May need velocity shifts to be applied will use past RVS measurements

Extraction: cosmic rays & calibration

- After modelling for overlapping windows, and background modelling (diffuse, point-source and extended object), spectra can be extracted and background subtracted.
- The extraction process is responsible for <u>applying</u> the calibrations
 - photometric throughput
 - wavelength scale
 - cosmetic defects on CCD
 - ... propagation of error/uncertainty information, quality flags
- Also, a spectrum normalised to the local continuum will be generated
- Cosmic ray removal is required using some TBD algorithm.

Multiple transits

- Such a sequence will be applied to the individual spectra from each CCD transit. Multiple transits will not be combined in the image plane as this will effectively lead to increased crowding resulting from the different orientations on the sky of the individual scans.
- There will be particular scans which for any particular object are more free from overlap than others are, and a scheme may be envisaged where the information extracted from those scans are used preferentially in the modelling necessary for those scans where spectra are overlapped.
- This may not be possible for the faintest stars. Further investigation into these possibilities is necessary.

Workpackage 620

The top level WBS is given in GAIA-C6-SP-OPM-DK-003-1 GWP-S-620 Spectra extraction

- 620-01000 Management, configuration management & interfaces
- 620-02000 Detailed functional analysis of spectra extraction
- 620-03000 Extract spectra from raw images
- 620-04000 Apply calibration
- 620-05000 Model background generated by extended sources
- 620-06000 Model background generated by point like sources
- 620-07000 Clean spectra
- 620-08000 Normalization to the continuum
- 620-09000 Validation: spectra extraction

Work Plan - Extraction

- Phase 1 (Oct06-Jan07) mostly WP 620-01000
 - familiarisation with CU6 infrastructure
 - familiarisation with CU1 methodologies
 - set up management interfaces with CU6 and CU5 (PPARC)
 - contribute to continuing functional analysis at CU6 level
 - detailed definition of external interfaces and protocols to routines based on functional analysis
- Phase 2 (Dec06-Mar07) mostly WP 620-02000
 - refine the requirements for the extraction workpackage tasks
 - perform detailed functional analysis for extraction tasks
 - specify internal interfaces
 - consider and devise test frameworks
- Phase 3 (Feb07-May07) other WP 620-0x000
 - prototype code
 - generate test harnesses
 - iterate

Title: Management, config	uration management and interfaces		
Provider: MSSL	Manager: Simon Rosen		
Start: 01/10/2006	End: 01/03/2012	Effort: 0.1 MY/year	
222 5777	had an annual to		

Objective:

To manage the spectral extraction workpackages to ensure that the software development is produced to specification and on time.

Tasks:

This package covers the management responsibilities for finance, reporting, internal organisation, interfacing with the wider GAIA consortium and software development management

- Communicate with ESA, Meudon (CU6 lead institute) and where necessary, other GAIA CUs, for all CU6-specific and general GAIA software and other project issues (e.g. calibration, archiving, interfacing, scheduling, planning etc.), to ensure timely delivery and quality control of required software.
- Act as point of contact (POC) for information flow, SPR/SCRs, and CU6/project decisions. Respond to problems/issues.
- 3. Oversee internal manpower assignments, resourcing, scheduling and budget control.
- Oversee all design, prototyping, coding, testing and validation/quality control of spectroscopic extraction workpackages for which MSSL is responsible.
- 5. Ensure documentation is written, maintained and appropriately organised.
- 6. Ensure local staff are fully familiar with project documentation and procedures.
- Interface with PPARC (via the Vega consortium) with regard to financial reporting and related issues. Maintain close liaison with Cambridge/Vega consortium relating to UK involvement with the GAIA project.

D II MOOT					
Provider: MSSL	Manager: Simon Rosen				
Start: 01/10/2006 End: 01/10/2007 Effort: 0.3 MY/year					
Objective : To produce a detailed funct	ional analysis of the spectral extracti	on tasks.			
Tasks:					
Tasks: This workpackage defines t	he spectral extraction task from raw	data to calibrated spectra.			
Tasks: This workpackage defines t 1. consider and design the design, removing bac	he spectral extraction task from raw ne workflow for extracting spectra fro kground, cleaning and calibrating th	data to calibrated spectra. om data within the context of the Astrium tem			
Tasks: This workpackage defines t 1. consider and design the design, removing bac 2. identify and scope the	he spectral extraction task from raw he workflow for extracting spectra fro kground, cleaning and calibrating th e data storage requirements and trans	data to calibrated spectra. om data within the context of the Astrium tem sfer rates			
Tasks: This workpackage defines t 1. consider and design the design, removing bac 2. identify and scope the 3. identify external and	he spectral extraction task from raw he workflow for extracting spectra fro kground, cleaning and calibrating th e data storage requirements and trans auxiliary data required	data to calibrated spectra. om data within the context of the Astrium tem sfer rates			

Title: Extract Spectra		
Provider: MSSL	Manager: Simon Rosen	
Start: 01/10/2007	End: 01/03/2012	Effort: 0.2 MY/year
Objective: To develop the code to ex	tract the spectra from the RVS data stre	eam, together with associated parameters.
This workpackage define 1. consider the implic 2. explore and develo 3. prototype different 4. develop verification	s the optimal spectral extraction algori ations of the Astrium-3 design on the p extraction concepts extraction schemes n code	ithm: extraction concept
 test prototype sche overlapping windo select optimal sche 	mes on simulated data in a standard se ws) mes	et of scenarios (LR/HR/mixed windows,
 7. develop code for o 8. verify spectral extr 	otimal scheme action	

Input:

- 1. GAIA-C6-TN-OPM-DK-001-2: Gaia spectroscopic processing Preliminary functional and data flow analysis
- 2. Gaia-3 design and operational parameters
- 3. simulated datasets

Output:

- 1. Updated functional analysis for spectral extraction: GWP-S-620-02000 simulated data
- 2. verified code module
- 3. test datasets

Title: Apply calibration		
Provider: MSSL	Manager: Simon Rosen	
Start: 01/10/2007	End: 01/03/2012	Effort: 0.2 MY/year
Objective : To develop the code to com	vert the RVS raw spectra from space	craft-specific to standard units.
data. All calibration aspect throughput. 1. consider the implicat	ts need to be considered, in particu	lar the wavelength and the photometric
 provide interfaces for develop code for cali 	bration at CCD level (bias removal, t) flat fields, cosmetic defects)
 develop code for way develop code for pho dom errors 	elength calibration including propag tometric throughput calibration inclu	gation of systematic and random errors uding propagation of systematic and ran-
 develop verification of verify calibration usi 	code ng simulated data	

Gaia DPAC WP:

GWP-S-620-05000

Title: Model background g	enerated by extended sources	
Provider: MSSL	Manager: Simon Rosen	
Start: 01/10/2006	End: 01/03/2012	Effort: 0.2 MY/year

Objective:

To develop the code to model the background contribution within spectra from extended sources.

Tasks:

This workpackage will produce the code which identifies and accumulates the background flux contribution from extended sources. The main extended source component will be cosmic in origin (galaxies, nebulae) but there may also be internal sources (optical ghosts). The catalog of extended objects to be used will be available from public sources (eg NGC2000, MCG, CGCG).

- identify limiting values (G_{RVS}magnitudes arcsec⁻², extent, emission line strengths, central condensation *etc.*) for consideration as extended sources
- 2. classify types of cosmic extended sources (e.g. are globular clusters extended sources?)
- 3. collate appropriate catalogs or image data for cosmic extended objects
- identify and collate quantitative information on other sources of diffuse background such as Zodiacal light and diffuse galactic emission
- 5. identify sources of internal extended objects (ghosts, scattered light)
- 6. develop code to generate internal extended source structure from bright star catalogs
- 7. develop code to generate spectral contributions from individual extended sources
- 8. develope code to model other diffuse sources of bacground.
- develop code to accumulate spectral contributions from individual extended sources and other diffuse emission for observed object windows including propagation of systematic and random errors
- 10. develop verification code
- 11. verify extended background prediction using simulated data

Gaia DPAC WP:

GWP-S-620-06000

Title: Model background ge	enerated by point-like sources	
Provider: MSSL	Manager: Simon Rosen	
Start: 01/10/2006	End: 01/03/2012	Effort: 0.2 MY/year

Objective:

To develop the code to model the background contribution within spectra from point-like sources.

Tasks:

This workpackage will produce the code which identifies and accumulates the background flux contribution from point-like sources. Point sources will be observed with *Gaia* to $G \sim 20$, but there will not be a complete sample of objects in crowded regions, or for bright objects, so other external information and catalogs will be required.

- 1. identify the characteristics of the point-source background that needs to be considered (limiting $G_{\rm RVS}$ magnitude *etc.*)
- 2. identify the extent to which background can be modelled giving limited photometric/spectroscopic knowledge about the objects, and develop a strategy to handle this
- 3. collate appropriate catalogs for point sources (eg Hipparcos, USNO-B1.0)
- 4. identify access to *Gaia* skymapper, photometry or spectrometry data from earlier scans for use in constructing point source background, together with accurate positions
- 5. generate a strategy as to what information should be used from which resources under particular conditions (limiting magnitude, extent of *Gaia* data products *etc.*)
- develop code to generate spectral contributions from individual point sources, taking into account their classification/spectral types
- develop code to accumulate spectral contributions from individual point sources for observed object windows including (for bright sources) at wavelengths outside the RVS band and also including the propagation of systematic and random errors
- 8. develop verification code
- 9. verify point-source background prediction using simulated data

Title: Clean spectra				
Provider: MSSL	Manager: Simon Rosen			
Start: 01/10/2006 End: 01/03/2012 Effort: 0.2 MY/year				
Objective : To develop the code to subt	ract backgrounds from the spectral of	lata		
Tasks: This workpackage will pro- the cosmic ray contaminati	duce the code which subtracts the ba	ckgrounds from the spectra and removes		
 identify optimal algo identify optimal algo 	rithms for dealing with cosmic ray is rithms for dealing with cosmic ray s	dentification ubtraction		
3. develop code to perfe	orm cosmic removal including propa	gation of systematic and random errors		
develop code to subtatic and random erro	ract extended and point source backs	ground including propagation of system-		
5. develop verification of	code			

6. verify cleaning algorithm using simulated data

Title: Normalisation to the	continuum	
Provider: MSSL	Manager: Simon Rosen	
Start: 01/10/2006	End: 01/03/2012	Effort: 0.2 MY/year
Objective: To develop the code to norm	alise the spectra by their continuum	n
 This workpackage will prod in preparation for the radial 1. classify different natu 2. identify optimal algo sion/absorption lines 3. develop code to fit the 	uce the code which normalises the velocity determinations. res of the spectral continua as a fun- rithms for robust automated fitting of different number, depth and width continuum, and to divide by it to n	spectra by their local continuum. This is ction of object type g to the continuum, dealing with emis- h normalise the spectra, including propaga-
tion of systematic and 4. develop verification c	random errors ode	
5. verify normalisation c	ode using simulated data	

Title: Validation: spectra ex	traction			
Provider: MSSL	Manager: Simon Rosen			
Start: 01/10/2007 End: 01/10/2011 Effort: 0.3 MY/yea				
Objective : To validate the spectral extra	action tasks.			
This workpackage validates chain are verified within the	the entire spectral extraction chain ir own workpackages).	end-to-end (individual components of the		
 specify the simulated windows, overlapping specify and write the 	data for testing the spectral extract windows, different extended and p verification analysis software	tion chain in different scenarios (nominal point-source backgrounds etc.)		
3. verify normalisation of	code using simulated data			

