Manufacturing cross-correlation masks

Frédéric Royer

GEPI – Observatoire de Paris

CU6 Workshop II – Brussels

Cross-correlation techniques

• using a synthetic template *M*:

$$C(\epsilon) = \int_D S(v) M(v - \epsilon) dv$$
 (1)

• using a binary mask M:

$$C(\epsilon) = \sum_{i} \int_{-\epsilon + u_i - \Delta u_i/2}^{-\epsilon + u_i + \Delta u_i/2} S(v) \, \mathrm{d}v, \qquad (2)$$

where Δu_i is the width of the *i*-th line, centered on u_i .

- advantages of binary masks
 - use only parts of the spectrum (i.e. less computational time)
 - ightharpoonup CCF pprox average line profile (degraded by a boxed profile)

CORAVEL-type CCF

- position ⇒ radial velocity
- width $\Rightarrow v \sin i$
- \circ surface \Rightarrow [Fe/H]

(Santos et al. 2002)

Manufacturing masks

(see Baranne et al. 1979)

- "cutting" the lines on the level of the mean value
- tuning the tolerance on the box width
- optimizing the mask:
 - transparency
 - contrast of the resultingCCF

Calibrating masks

Rotational velocities

$$v\sin i = A\sqrt{\sigma^2 - \sigma_0^2} \quad (3)$$

- σ: observed CCF width
- σ_0 : zero-rotation width
- A: scale constant
 - \triangleright σ_0 , A to be calibrated
 - ▶ variation of σ_0 with B V

(Santos et al. 2002)

Workpackage GWP-S-650-05000

Start: Jan 2007 | End: Jun 2012 | FTE: 0.2 | Input: Synthetic and observed (high S/N) spectra at R = 11500 | Output: Grid of binary masks

Input

- ightharpoonup Synthetic spectra (noiseless, good sampling, R=11500) to create the binary masks
- Synthetic spectra (noise, GAIA sampling, R=11500) and observed spectra (GAIA sampling, R=11500) to test and calibrate the masks

Workplan

- Specific correlation algorithm!
 - coordination with Y. Viala and C. Delle Luche (GWP-S-650-07000)
- Synthetic and observed spectra
 - ▶ interface with CU8
- First masks for ≈March 2007