Detection, design, Payload Data Handling Electronics

and RVSM

F. Arenou & S. Mignot

tokala manana a

The instrument

based on CUO-117 proposal

Spectro field

- Objects:
 - Stars
 - NEOs
 - Saturated objects

Detection of moving objects

- ~50s between RVSM1 and RVSM8
- Assumption @G>20: $\sigma(8-1)>4$ mas/s
- MBO: σ =10mas/s AL, 15 AC
- NEO: σ =30 mas/s AL, 40 AC
- But what about the PSF effect?

Function of RVSM

- Read all pixels of all CCDs
- Run detection in all CCDs
 - <3000 obj/s assumed (80000 max)</pre>
- Cross-correlate detections
 - high computational complexity
- Transmit position and flux
 - of all objects brighter than G=20 (pollution of spectra)
- Transmit background map #5
 - Computed in a 32x32 px^2 mesh
- Determine NEO

05906/03 - F.A.+S.M.

- Transmit position, motion and flux.
- Astrium: bright star for ASM
 Activation of gates 38mn later

Application of RVSM

RVSM #3:

- improved centroiding for saturated objects (wavelength calibration)
- is optical quality good enough?
- RVSM #5 and #6:
 - red filters: 848 to 874 nm
 - calibrate the RVS sky background (download specific data)
 - demix the stacked spectra in high stellar density areas (predict precise RVS content).
- RVSM #1 (#2), #4, #7 (#8)
 - normal objects
 - detect as faint as possible

Detection: Algorithmic drivers

Simplicity:

- Real-time constraints
- Limited computing power

Efficiency:

- Telemetry & computing resources (false detections)
- Growding of spectra (completeness) > G=20
- Completeness of telemetered information (calibration)

Robustness:

- Instrument deterioration (detectors and geometry)
- Diversity of observed objects & associated tasks (stars, saturated objects, NEOs, cosmic rays, extended objects, etc.)

RVS WORKSHOP V

Modes of operation

Two approaches

<u>Algorithm</u>	<u>SWA</u>	<u>GD</u>
Origin	E. Hoeg C. Babusiaux	APM, M. Irwin F. Chéreau + S. Mignot
Development	1999	2002
Method	Peak-finding	Segmentation
Buffering	Local approach	Region
Denoising	Convolution 3x3 kernel	Convolution 3x3 kernel
Background	Between PSF spikes	hyperpixels of 32x32 samples
Detection	8-connectivity, χ^2 test 1 max = 1 object	pixel SNR-threshold above interpolated background
Data collection	Background object SNR filtering	Connected components object SNR filtering
measurements	Local centroid (barycenter), flux, background	Object centroid (LSF-fitting AL) flux, background, shape, object classification
Other processing		Remove false detection on spikes. Double/Multiple stars deblending
Advantages	fast	Extended objects: galaxies, asteroids (spatial extension+motion)

ASM detection performances

- Comparison between different algorithms in ASM
 - GD, SWA, APM (M. Irwin), SExtractor (E. Bertin)

Thresholds fixed such as:

Less than 1 false detection per million of pixels (~ 1 per 200 stars)

RVS WORKSHOP V

maximum number of detections

Former RON was too optimistic

- 8.7 e- instead of 14 in ASM
- Completeness at G=20?
- 0.5 mag will be lost at faint end
- Loss of precision for faint objects

Development drivers

RVS WORKSHOP VI

- Adapt the Astro methodology to RVSMs
 - Specific PSFs & high level of variability
 - red filter, noise, vignetting
 (pixel distribution)
 - Specific requirements
 - background

3

- moving objects
- extensive cross-matching
- redundancy scheme & instrument
 modes
- error tolerance (acquisition, pre-processing, calibration)

Observing strategy

Extraction of spectra

Localisation of spectra

- Depending on spectrum geometry and object motion across the RVS
 - straight spectrum and AL displacement only: simple formula
 - crooked spectrum and mixed AL & AC displacements: use a look-up table
- PDHE's VPU considers the output of the RPPU as a virtual CCD (needs to be defined precisely)

Selection

- All pixels are read in RVS: possibility to form packets for all detected objects (limited by the processing power in very dense regions)
- Telemetry-imposed selection: define subsets of consistent data for ground reduction (demixing constraints)

RVS WORKSHOP V

PDHE contract

PDHE contract status

Phases

- requirement study and consolidation
- architectural design of the breadboard.

Sizing the electronics:

- handle maximum object density in continuous mode.
- Pixel-based / object-based task separation for analogical / digital electronic separation:
 - implies very limited complexity on the pixel side and ensuring that the data flows on the object side are considerably reduced.
- Started February, end of phase 1 planned around September

RVS WORKSHOP V

Priority to pixel-wise operations (hardware design) / software specification (architecture independent)

First PDHE progress meeting

RVS WORKSHOP V

- A large work has been done for the on-board electronics
- Algorithm implementation significantly different from what we proposed
 - A sequential algorithm
 - Separating pixel-based and objectbased operations
 - Based on a FFT processor

Sky background

- Computing background is needed before validating the detection
- Represents probably most of "pixel" operations
- Flux level
 - Low in astro (1e-/ASM sample)... except in interesting areas
 - High in MBSM/RVSM (>60e-/px)
- Statistical estimate
 - Mean really biased (σ ~0.5e-)
 - Median not convergent (& slow)
 - Mode may be preferable (faster)

HST in Orion: ASM (contours at 20,22,24,26e-) RVSM (contours at 4000,5000,6000,7000 e-)

On-going work (general)

Baseline (GD & pixel-based operations)

- Migrating towards the hardware way of thinking for tasks relying on complex logic in software implementation:
 - pre-detection background estimation,
 - connected component search & data strip processing
- Adaptation of the processing architecture.
- implementation aspects & possible trade-offs:
- Provide a decision tree for the selection / telemetry
- Evaluation of the alternative approach proposed by the contractor (exploiting pre-existing technology)

RVS WORKSHOP V

8

Work to be done (RVS)

Cross-correlation between CCDs' detections

- important data rates for detection = complexity for cross-correlation
- on-going study (may-august)
- RVSM performances (current unknowns: PSF + cosmic rays)
- Specific RVS tasks: spectrum localisation & background
- PDHE / RVS consortium interface
 - Definition of the interface between the RVS Pre-Processing Unit and VPUs
 - Specific packets definition (overlapping spectra) for PDHE+GDAAS
 - Detailed study of the bright star detection in RVSM
 - Performances of the detection and associated measurements in RVSM
 - Predicting the time and location in Astro 1 and 2
- RVS modes
 - especially in very high density fields: run background computation only?

RVS WORKSHOP V

calibration mode

Future developments

Robustness / full range of possible objects

- moving objects, asteroids,
- extended objects,
- high and varying background,
- realistic cosmic rays

Provide a complete and accurate model of object displacement on the focal planes (Astro & Spectro)

With the required precision levels: precision on velocities and on their variations, non linear effects etc.

RVS WORKSHOP V

RVSM Data reduction

• GDAAS 2 : april 2004