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INTRODUCTION:INTRODUCTION: THE PROBLEMTHE PROBLEM

This study discusses the methods and algorithms involved in theThis study discusses the methods and algorithms involved in the
computational solution of:computational solution of:

Unconstrained minimization of multidimensional functions withoutUnconstrained minimization of multidimensional functions without derivativesderivatives

The function (usually referred to as The function (usually referred to as object functionobject function):):

Examples of the object function:Examples of the object function:
-- light curve flux at the given phase from light curve flux at the given phase from nn physical parametersphysical parameters
-- χχ22 value of the syntheticvalue of the synthetic–– observed stellar spectrum (observed stellar spectrum (TT, log , log gg, [M/H], , [M/H], vv))

Minimization:Minimization:

Or, in short:Or, in short:



INTRODUCTION:INTRODUCTION: THE PROBLEMTHE PROBLEM

This study discusses the methods and algorithms involved in theThis study discusses the methods and algorithms involved in the
computational solution of:computational solution of:

Unconstrained minimization of multidimensional functions withoutUnconstrained minimization of multidimensional functions without derivativesderivatives

Unconstrained:Unconstrained:

Constrained:Constrained:

““Without derivatives” doesn't mean that the derivatives don't exiWithout derivatives” doesn't mean that the derivatives don't exist or that theyst or that they
are not piecewise connected, it only means that we cannot (or woare not piecewise connected, it only means that we cannot (or would not) useuld not) use
them explicitly.them explicitly.

All such methods are All such methods are globally convergentglobally convergent if any minimumif any minimum
(local or global) is contained within the observed hyperspace.(local or global) is contained within the observed hyperspace.



INTRODUCTION:INTRODUCTION: DEGENERACY, FINDING GLOBAL MINIMUMDEGENERACY, FINDING GLOBAL MINIMUM

Although convergent, these methods Although convergent, these methods never offer any notionnever offer any notion of which minimumof which minimum
they converge to. Thus we need heuristic approaches to resolve tthey converge to. Thus we need heuristic approaches to resolve this problem:his problem:

b)b) once in a given minimum, perturb it byonce in a given minimum, perturb it by
taking a finite step away in some randomtaking a finite step away in some random
direction. If for all perturbations thedirection. If for all perturbations the
minimum is the same or its value isminimum is the same or its value is
increased, it is again likely to be theincreased, it is again likely to be the
global minimum.global minimum.

Obviously, Obviously, rightright combination of the combination of the wrongwrong
parameters can give us parameters can give us severesevere headache!headache!

a)a) use the method on many starting points in hyperspace and compareuse the method on many starting points in hyperspace and compare thethe
different values of convergence. The lowermost will likely be thdifferent values of convergence. The lowermost will likely be the globale global
minimum.minimum.



11stst algorithm:algorithm: BRACKETING OF 1D FUNCTION (BRENT)BRACKETING OF 1D FUNCTION (BRENT)

For bracketing a minimum in 1D, we need a triplet of points:  (For bracketing a minimum in 1D, we need a triplet of points:  (a, b, ca, b, c).).

If  If  aa < < bb < < cc and the following relation between their functional values holand the following relation between their functional values holds:ds:

then there is a minimum which we may find e.g. by bisection.then there is a minimum which we may find e.g. by bisection.

Bracketing a minimum of a givenBracketing a minimum of a given multidimensional function multidimensional function isis not possiblenot possible!!



22ndnd algorithm:algorithm: POWELL'S DIRECTION SET METHODPOWELL'S DIRECTION SET METHOD

1D bracketing (A.K.A. line bracketing) may still be used for mul1D bracketing (A.K.A. line bracketing) may still be used for multidimensionaltidimensional
functions.functions.

If we start from point If we start from point pp in our nD hyperspace and proceed from there in somein our nD hyperspace and proceed from there in some
vector direction vector direction uu, we may minimize our function , we may minimize our function ff along the line determinedalong the line determined
by by uu with simple line bracketing.with simple line bracketing.

Once the 1D minimization along Once the 1D minimization along uu
is complete, the  next  direction  isis complete, the  next  direction  is
chosen and the process is repeated.chosen and the process is repeated.

There are many versions of theThere are many versions of the
Powell's method. They all sharePowell's method. They all share

the same base, the only differencethe same base, the only difference
is in the way they calculate theis in the way they calculate the
consecutive set of directions theconsecutive set of directions the

minimizer should take.minimizer should take.



22ndnd algorithm:algorithm: POWELL'S DIRECTION SET METHODPOWELL'S DIRECTION SET METHOD

If the function gradient is unattainable, the simplest approach If the function gradient is unattainable, the simplest approach is to follow theis to follow the
unit vectors unit vectors ee11 , , ee22 , ..., , ..., eenn in the direction set. The algorithm then cyclesin the direction set. The algorithm then cycles
through all these directions until the function stops decreasingthrough all these directions until the function stops decreasing. However, this. However, this
method may be method may be very inefficientvery inefficient (e.g. for long narrow valleys).(e.g. for long narrow valleys).

a)a) come up with a set which includes some very good directions,come up with a set which includes some very good directions,

b)b) establish a subset of “nonestablish a subset of “non--interfering” directions, that are independentinterfering” directions, that are independent
among themselves, i.e. the line minimization along one directionamong themselves, i.e. the line minimization along one direction isn'tisn't
“spoiled” by the subsequent minimization along the other.“spoiled” by the subsequent minimization along the other.

-- If If ff is minimized along is minimized along uu, then , then ∇∇ff must be perpendicular to must be perpendicular to uu at minimum.at minimum.
-- The function may be expanded in Taylor series around the originThe function may be expanded in Taylor series around the origin p p ::



22ndnd algorithm:algorithm: POWELL'S DIRECTION SET METHODPOWELL'S DIRECTION SET METHOD

By taking the gradient of the Taylor expansion:By taking the gradient of the Taylor expansion:

we may calculate the change in gradient when moving along one diwe may calculate the change in gradient when moving along one direction:rection:

After After ff is minimized alongis minimized along uu, the algorithm proposes a new direction , the algorithm proposes a new direction vv, so that, so that
minimization along minimization along vv doesn't spoil the minimum along doesn't spoil the minimum along uu. For this to be true,. For this to be true,
the function gradient must stay perpendicular to the function gradient must stay perpendicular to uu::

When this is true, u and v are said to be conjugate. For conjugaWhen this is true, u and v are said to be conjugate. For conjugate directions thete directions the
cycling doesn't make sense and we get cycling doesn't make sense and we get quadratic convergencequadratic convergence to the minimum!to the minimum!



33rdrd algorithm:algorithm: DOWNHILL SIMPLEX METHOD (NELDER & MEAD)DOWNHILL SIMPLEX METHOD (NELDER & MEAD)

A simplex is an nD geometrical body that is determined by (n+1) vertices along
with their interconnecting lines and polygonal faces.

If any of (n+1) vertices are taken as origin, then the rest n vertices span an nD
vector (parameter) space.

The essence:
1) The function f is evaluated in each vertex of the simplex.
2) The vertex with the largest value is replaced by the new vertex that is

obtained by reflection, expansion or contraction (amoebic adaptation
3) If this lowers the function value, the new vertex is adopted.



44thth algorithm:algorithm: SIMULATED ANNEALINGSIMULATED ANNEALING

Based on thermodynamical relaxation, suitable for converging to a global mi-
nimum among many local minima.

The essence:
1) The system selects a given (usually

arbitrary) initial state.
2) The cost function is calculated (e.g.

the function value, χ2, ...) for that
state.

3) A  random-walk  modification  is
introduced to the system  and  the
cost function is re-evaluated.

4a) If the new state improves the initial
one, it is unconditionally accepted.

4b) If the new state doesn't imrove the
initial one, it is discarded with a
certain (exponential) probability.



The comparison:The comparison: CHOSEN FUNCTION: DEGENERATE, “HILLY”CHOSEN FUNCTION: DEGENERATE, “HILLY”



The comparison:The comparison: DIRECTION SET vs. DOWNHILL SIMPLEXDIRECTION SET vs. DOWNHILL SIMPLEX

Downhill simplex requires ~35 iterations to reach a (local or global) minimum.



The comparison:The comparison: DIRECTION SET vs. DOWNHILL SIMPLEXDIRECTION SET vs. DOWNHILL SIMPLEX

Direction set requires ~2 iterations to reach a (local or global) minimum!



The comparison:The comparison: DIRECTION SET vs. DOWNHILL SIMPLEXDIRECTION SET vs. DOWNHILL SIMPLEX

Simulated annealing after 100 000 (left) and 1 000 (right) cooling steps.



Other ways:Other ways: GRADIENTS, DC, LEVENBERGGRADIENTS, DC, LEVENBERG--MARQUARDT, ...MARQUARDT, ...

1) Numerical methods using gradients
1a) The method of steepest descent (direction set modificatio
1b) Variable metric method (most effective to date)

2) Differential corrections
2a) Finite differences (already implemented, often divergent)
2b) Singular Value Decomposition (SVD)

3) The Levenberg-Marquardt algorithm:
combines the method of steepest descent with inverse Hessian metho

4) Constrained multidimensional solvers
linear and non-linear programming (simplex methods)



Classification algorithms:Classification algorithms: SERIES COEFFICIENTS  SERIES COEFFICIENTS  
CORRELATIONCORRELATION

Used in most scanning missions of today (ASAS, TASS, OGLE, EROS, ...)

We are observing the correlations
between different linear combina-
tions of obtained coefficients.

- Every type is represented by a particular
subspace of the whole hyperspace.

- For each cross-plane we calculate the
score: 1 within the subspace and expo-
nentially falling out of bounds.

- Multiply scores for all different cross-
planes. The highest value wins!

- If there are more winners, double
classification is possible.

- If no score is high enough, it is left
unclassified.



Classification algorithms:Classification algorithms: NEURAL NETWORKS, BAYESNEURAL NETWORKS, BAYES

Before using neural networks, it is crucial to assess whether non-linear regression
can solve our problem, since it converges ~1 order faster than NN!

The basic idea of neural networks is taken from biology – there is (a weak)
analogy with neurons and synapses.

Symbols and jargon: x y

input             output               targetobserved variables

computed values as a function
of one or more variables

linear combination

the source of the arrow is an
argument of its destination
fit both sides by least squares

logistic function

binary function



Classification algorithms:Classification algorithms: NEURAL NETWORKS, BAYESNEURAL NETWORKS, BAYES

nx ... number of inputs
xi ... inputs
aj ... bias for output layer
bij ... weight from input
qj ... linear combination
pj ... activation function
rj ... the residuals

A role of the perceptron is to compute qj
(the net input). To net input an activation
function is applied to obtain the output.

x2

x1

y

e.g. x3

a
For this particular layer:



Classification algorithms:Classification algorithms: NEURAL NETWORKS, BAYESNEURAL NETWORKS, BAYES

For large datasets (such as the ones of GAIA) we need unsupervised learning:

This time, the second layer (the visible one) is a binary layer: only one is
activated and all others are suppressed to 0 (winner-take-all model). The
winner is the one neuron with the largest net input: the one whose weights
are most similar to inputs.

x2

x1

x3

ai

x2

x1
x1

x2

x3
x3

ai



CONCLUSIONCONCLUSION

There are still other algorithms yet to be investigated and benchmarked for
usage plausibility of GAIA data.

Based on our current tests:

- For modeling, Powell's conjugate direction set method with heuristic
search seems most attractive, but yet to be proven on real data.

[ A working implementation is already used for EBs (PHOEBE) ]

- For classification, Artificial Neural Network approach seems promising,
but due to its unphysical approach further testing and benchmarking has
to be performed.

Further assessment is needed, we are open for suggestions!




