Automatic determination of

Stellar Atmospheric Parameters

of GAIA-RVS spectra

A. Recio-Blanco

In collaboration with: A. Bijaoui, P. de Laverny, D.Katz, F. Thévenin and the MARCS collaboration

### 1. The methods

*Two approaches to derive the individual abundances from the RVS spectrum* 

. . . .

All the atmospheric parameters and the individual abundances are derived from the RVS spectra (**ONLY** !)

2. Atmospheric parameters from astrometry and photometry

Individual abundances from RVS spectra

### 1. The methods – case A

Observed GAIA spectrum

## Automatic procedure



Grid of synthetic spectra

Atmospheric parameters and individual abundances

of the star

### 1. The methods - Alternative

Observed GAIA spectrum + Inputs from Photometry & Astrometry

## Automatic procedure



Grid of synthetic spectra

Individual abundances

of the star

Alternative to be tested in the coming 6 months

### 1. The method

### Grid of synthetic spectra

- Grid of synthetic MARCS spectra in the GAIA domain.
  - $\lambda$  range = 8475 8745 Å, in steps of  $d\lambda = 0.02$  Å
  - Effective Temperature range : 4000 K 7500 K, step = 250 K
- Gravity (log g) range : 0.0 5.0, step = 0.5
- *Metallicity* ([*M*/H]) : 4.0, -3.0, -2.0, -1.0, -0.5, 0.0, +0.5 (a enhanced)
- Convolved to  $d\lambda = 0.24$  Å => 3 points / RVS resolution element

- Convolved with a Gaussian noise
- New dimension added to the grid:
  - [Ca/Fe] = -0.5, 0, +0.5





The automatic procedure - Alternative

• *Tests with the Principal Component Analysis* 



Diagonalization of the correlation matrix => new system of the eigenvectors

| i | $\mathbf{e}_i$ | $\mathrm{V}_i$ | $\mathrm{C}_i$ |
|---|----------------|----------------|----------------|
| 1 | 1.72           | 57.3           | 57.3           |
| 2 | 0.99           | 33.0           | 90.3           |
| 3 | 0.29           | 9.7            | 100.0          |

 $e_i = Eigenvector's value$  $V_i = Associated variance$  $C_i = Cumulative variance$ 

 $\Theta_4$ 

 $\Theta_5$ 

 $\Theta_6$ 

ξ2

Θ3

Θ2

-0.5

 $\Theta_1$ 

1. The method

🚓 🖉 👘 👘 👘 👘

### The input GAIA spectra

Grid of synthetic spectra + Gaussian noise
"The Grid looks for itself !"

State of the second second

Better results than in december

- Errors in Teff, log g, [M/H] =0 for 100% of spectra if SNR>45 and [M/H]>= - 2
- More metal-poor stars: larger errors for the gravity
- Interpolated spectrum (outside the Grid) + Gaussian noise
  - Stellar parameters not always well found
  - *Effects of [Ca/Fe] variations can mimic Teff variations*
  - To be more tested in the coming months

### 1. The method

### Work in progress and future improvements

A CONTRACTOR OF A CONTRACTOR OF

- Results for input spectra "out of the grid" .
- Results for spectra with abundance anomalies (in [Ca/Fe], [ $\alpha$  /Fe],...)
- Results for spectra with different values of microturbulence, macroturbulence and rotation...

• Individual abundances: Ca, Fe, Mg, Si, Ti.

• Other technique of parameter determination: Principal Component Analysis.

and the second second

2. Tests with real data in the RVS domain

• Galactic Globular Cluster 47Tuc

10 M

• Galactic Open Cluster M67

1 2 X

• ESO/Flames application for 3 galactic fields to periodically check the procedure during the GAIA mission.

# Galactic Globular Cluster 47 Tuc

#### [*M*/*H*] ~ -0.75

# ~220 RGB & HB stars observed with Flames (R~17000)



# Old Galactic Open Cluster M67

### 4.5 Gy

# ~40 stars observed with UVES (R~50 000)



# The FLAMES proposal

• About 500 stars in 3 fields with SNR=40-60 (for I < 16)

GIRAFFE + UVES = 130 + 8 fibers Field of view: diameter = 25 arcmin Set up: Giraffe # 21 (8484 – 9000 Å) R=16200 UVES (4500-7500 + 6000-9000Å) R=40000

# The FLAMES proposal

1.1



# The FLAMES proposal

1.1.1



# The FLAMES proposal

1.1

